遗传算法(Genetic Algorithm, GA)
简介
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化算法,由 John Holland 于20世纪70年代提出。它是一种模拟生物进化过程的启发式搜索算法,被广泛应用于函数优化、机器学习、调度问题等领域。
代码说明
参数定义:
设置种群大小、基因长度、最大代数、交叉概率、变异概率等参数。
适应度函数:
目标函数为 f(x)=x^2 ,即计算个体的适应度值。
初始化种群:
随机生成一个种群,每个个体用 5 位二进制编码,表示范围[0,31]的整数。
选择操作(selection):
使用轮盘赌选择方法,根据适应度值的比例概率挑选个体。
交叉操作(crossover):
使用单点交叉,将两个父代基因部分交换生成子代。
变异操作(mutate):
以一定概率随机翻转个体的某个位,模拟基因突变。
主循环:
每一代执行以下操作:
计算每个个体的适应度值。
记录本代中适应度最高的个体。
执行选择、交叉和变异操作生成下一代种群。
重复直到达到指定代数。
结果输出与可视化:
打印每代的最佳适应度及个体。
绘制代数与最佳适应度的变化趋势图。
代码
import random
import matplotlib.pyplot as plt# 遗传算法参数
POPULATION_SIZE = 10 # 种群大小
GENE_LENGTH = 5 # 基因长度
GENERATIONS = 20 # 最大代数
CROSSOVER_RATE = 0.8 # 交叉概率
MUTATION_RATE = 0.1 # 变异概率# 适应度函数
def fitness_function(x):return x ** 2# 初始化种群(随机生成二进制字符串)
def initialize_population():return [random.randint(0, 2**GENE_LENGTH - 1) for _ in range(POPULATION_SIZE)]# 个体解码(二进制 -> 十进制)
def decode(individual):return individual# 选择操作(轮盘赌选择)
def selection(population, fitness_values):total_fitness = sum(fitness_values)probabilities = [f / total_fitness for f in fitness_values]cumulative_probs = [sum(probabilities[:i+1]) for i in range(len(probabilities))]selected = []for _ in range(POPULATION_SIZE):r = random.random()for i, cumulative_prob in enumerate(cumulative_probs):if r <= cumulative_prob:selected.append(population[i])breakreturn selected# 交叉操作
def crossover(parent1, parent2):if random.random() < CROSSOVER_RATE:point = random.randint(1, GENE_LENGTH - 1)mask = (1 << point) - 1child1 = (parent1 & mask) | (parent2 & ~mask)child2 = (parent2 & mask) | (parent1 & ~mask)return child1, child2return parent1, parent2# 变异操作
def mutate(individual):for i in range(GENE_LENGTH):if random.random() < MUTATION_RATE:individual ^= (1 << i) # 翻转某个位return individual# 遗传算法主程序
def genetic_algorithm():# 初始化种群population = initialize_population()best_fitness_history = [] # 每一代的最佳适应度记录for generation in range(GENERATIONS):# 计算适应度fitness_values = [fitness_function(decode(ind)) for ind in population]best_fitness = max(fitness_values)best_fitness_history.append(best_fitness) # 记录当前代的最佳适应度# 打印每代的最佳结果best_individual = population[fitness_values.index(best_fitness)]print(f"Generation {generation + 1}: Best fitness = {best_fitness}, Best individual = {best_individual} (Decoded: {decode(best_individual)})")# 选择操作selected_population = selection(population, fitness_values)# 交叉操作next_generation = []for i in range(0, POPULATION_SIZE, 2):parent1 = selected_population[i]parent2 = selected_population[(i + 1) % POPULATION_SIZE]child1, child2 = crossover(parent1, parent2)next_generation.extend([child1, child2])# 变异操作population = [mutate(ind) for ind in next_generation]# 返回结果和适应度历史final_fitness_values = [fitness_function(decode(ind)) for ind in population]best_individual = population[final_fitness_values.index(max(final_fitness_values))]return best_individual, max(final_fitness_values), best_fitness_history# 运行遗传算法
best_individual, best_fitness, fitness_history = genetic_algorithm()# 打印最优结果
print(f"Optimal solution: {best_individual} (Decoded: {decode(best_individual)}), Fitness: {best_fitness}")# 绘制统计图
plt.figure(figsize=(10, 6))
plt.plot(range(1, GENERATIONS + 1), fitness_history, marker='o', linestyle='-', color='b', label='Best Fitness')
plt.title("Genetic Algorithm Convergence", fontsize=14)
plt.xlabel("Generation", fontsize=12)
plt.ylabel("Fitness Value", fontsize=12)
plt.grid(True)
plt.legend()
plt.show()
相关文章:

遗传算法(Genetic Algorithm, GA)
简介 遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化算法,由 John Holland 于20世纪70年代提出。它是一种模拟生物进化过程的启发式搜索算法,被广泛应用于函数优化、机器学习、调度问题等领域。 代码说明 …...
【二分答案+倍增快速幂】课堂练习
P1678 烦恼的高考志愿 #include<bits/stdc.h> using namespace std; const int N1e55; int n,m,a[N];long long bs(int x){int l1,rn;while(l<r){int midlr>>1;if(a[mid]x) return 0;if(a[mid]>x) rmid-1;else lmid1;}//根据前驱后继返回最小差值//printf(&…...

LeetCode 力扣 热题 100道(九)反转链表(C++)
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 方法一:迭代法 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNod…...

Linux之网络基础
网络发展 网络的发展可以从人与人之间的工作模式开始谈起, 人与人的工作模式反应了机器与机器的工作模式: 1. 独立模式: 在网络发展的早期计算机间处于独立模式, 计算机之间相互独立 最开始计算机之间是独立运行的, 数据之间的交互需要人用软盘等存储介质拷贝过去, 一般涉及…...
Oracle收缩表空间的简单方法
在Oracle数据库中,收缩表空间是一种常见的维护操作,可以回收未使用的空间,减少表空间的碎片,提高性能。以下是一些步骤和方法: 1. 识别未使用的空间 首先,需要识别表空间中未使用的空间。可以通过查询 DB…...

C++设计模式行为模式———中介者模式
文章目录 一、引言二、中介者模式三、总结 一、引言 中介者模式是一种行为设计模式, 能让你减少对象之间混乱无序的依赖关系。 该模式会限制对象之间的直接交互, 迫使它们通过一个中介者对象进行合作。 中介者模式可以减少对象之间混乱无序的依赖关系&…...

YB2503HV:高效率降压IC,助力电动车、太阳能设备等领域的能源转换
今天我要向大家介绍一款引人注目的产品—— YB2503HV 100V 3A SOP8内置MOS 高效率降压IC。这款单片集成芯片具备可设定输出电流的开关型降压恒压驱动器功能,可广泛应用于电动车、太阳能设备、电子电池充电等领域。让我们一起来看看它的特点和应用吧! 首先…...

如何使用Jest测试你的React组件
在本文中,我们将了解如何使用Jest(Facebook 维护的一个测试框架)来测试我们的React组件。我们将首先了解如何在纯 JavaScript 函数上使用 Jest,然后再了解它提供的一些开箱即用的功能,这些功能专门用于使测试 React 应…...
微网能量管理研究
微网能量管理研究的重点 微网系统的建模 建立分布式能源单元模型以及微网系统的整体运行、协调控制和优化配置等方面的模型 分布式电源控制策略 微网内分布式电源及储能系统运行依赖于电力电子接口技术,需要相应的充放电控制策略 再生能源发电预测 准确预测太阳能…...
Java基础面试题02:简述什么是值传递和引用传递?
面试题:简述什么是值传递和引用传递? 什么是值传递? 值传递(pass by value)是指在调用函数时,把实际参数的值复制一份传递给函数。换句话说,函数内部对参数的任何修改,都不会影响到…...

【STL】10.set与map的模拟实现
一、源码及框架分析 SGI-STL30版本源代码,map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等及个头文件中。 map和set的实现结构框架核心部分截取出来如下: // set #ifndef __SGI_STL_INTERNAL_TREE_H #include <stl_tree.h> #endif …...
Playwright(Java版) - 8: Playwright 元素交互的高级应用
在自动化测试中,处理复杂的页面交互是常见的需求。例如,应对动态加载的元素、处理弹窗与对话框、模拟拖放操作,甚至在绘图板上进行绘图操作。 1 动态元素与弹窗处理 1.1 动态元素的加载与等待 动态页面可能会导致元素在操作时尚未完全加载&…...

播放器开发之ffmpeg 硬件解码方案
硬件编解码的概念 硬件编解码是⾮CPU通过烧写运⾏视频加速功能对⾼清视频流进⾏编解码,其中⾮CPU可包括GPU、FPGA或者 ASIC等独⽴硬件模块,把CPU⾼使⽤率的视频解码⼯作从CPU⾥分离出来,降低CPU的使⽤负荷,使得平台能 ⾼效且流畅…...
n、nvm、nrm、pnpm、yarn各种指令大全
n mac的版本管理工具(可能与nvm冲突) 安装 # 使用 npm / yarn npm i -g n yarn global add n # 使用 brew brew install n环境变量 export PATH"/usr/local/n/versions/node:$PATH"命令详解 版本查看 # 查看 n 版本 n --version/-V # 查…...
数据库管理-根据日期字段进行数据筛选更新数据
项目场景 数据插入、更新、查询 数据库中一张审计表格用来记录数据的操作包括数据的id,数据名称sjmc,数据状态sjzt,数据创建时间createtime,数据更新时间updatetime。 具体需求如下: 根据数据名称更新sjzt和update…...
03. 运算符
一、运算符与表达式 运算符 就是对字面量或者变量进行操作的符号;表达式 是指用运算符把字面量或者变量连接起来,符合 Python 语法的式子。不同运算符连接的表达式体现的是不同类型的表达式;Python 中的运算符主要包括 算术运算符、赋值运算符…...

【最优清零方案——贪心+滑动窗口+线段树】
题目 代码 #include <bits/stdc.h> using namespace std; using ll long long; const int N 1e6 10; int a[N]; struct node {int l, r;int m, p, lazy; } tr[4 * N]; void pushup(node &u, node &l, node &r) {if (l.m r.m){u.m l.m;u.p max(l.p, r.…...
一个点绕任意点旋转后的点的坐标
在平面坐标上,任意点P(x1,y1),绕一个坐标点Q(x2,y2)逆时针旋转θ角度后,新的坐标设为(x, y)的计算公式: x (x1 - x2)*cos(θ) - (y1 - y2)*sin(θ) x2 ; y (x1 - x2)*sin(θ) (y1 - y2)*cos(θ) y2 ; 另一个场景应用,坐标轴绕…...
大数据面试题每日练习--HDFS是如何工作的?
HDFS(Hadoop Distributed File System)是一个分布式文件系统,设计用于存储非常大的文件。它的主要工作原理如下: NameNode:管理文件系统的命名空间,维护文件目录树和文件元数据信息。NameNode记录每个文件…...

Python的3D可视化库 - vedo (2)visual子模块 基本可视化行为
文章目录 1. visual模块的继承关系2. 基类CommonVisual的方法2.1 获取对象信息2.1.1 对象本身信息2.1.2 对象的查找表2.1.3 对象标量范围2.1.4 对象缩略图 2.2 呈现对象2.2.1 在窗口显示1.2.2 对象可见性 2.2.3 对象颜色2.2.4 对象透明度 2.3 添加标度条2.3.1 2D标度条2.3.2 3D…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...