当前位置: 首页 > news >正文

遗传算法(Genetic Algorithm, GA)

简介

遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化算法,由 John Holland 于20世纪70年代提出。它是一种模拟生物进化过程的启发式搜索算法,被广泛应用于函数优化、机器学习、调度问题等领域。

代码说明

参数定义:
设置种群大小、基因长度、最大代数、交叉概率、变异概率等参数。
适应度函数:
目标函数为 f(x)=x^2 ,即计算个体的适应度值。
初始化种群:
随机生成一个种群,每个个体用 5 位二进制编码,表示范围[0,31]的整数。
选择操作(selection):
使用轮盘赌选择方法,根据适应度值的比例概率挑选个体。
交叉操作(crossover):
使用单点交叉,将两个父代基因部分交换生成子代。
变异操作(mutate):
以一定概率随机翻转个体的某个位,模拟基因突变。
主循环:
每一代执行以下操作:
计算每个个体的适应度值。
记录本代中适应度最高的个体。
执行选择、交叉和变异操作生成下一代种群。
重复直到达到指定代数。
结果输出与可视化:
打印每代的最佳适应度及个体。
绘制代数与最佳适应度的变化趋势图。
在这里插入图片描述

代码

import random
import matplotlib.pyplot as plt# 遗传算法参数
POPULATION_SIZE = 10  # 种群大小
GENE_LENGTH = 5       # 基因长度
GENERATIONS = 20      # 最大代数
CROSSOVER_RATE = 0.8  # 交叉概率
MUTATION_RATE = 0.1   # 变异概率# 适应度函数
def fitness_function(x):return x ** 2# 初始化种群(随机生成二进制字符串)
def initialize_population():return [random.randint(0, 2**GENE_LENGTH - 1) for _ in range(POPULATION_SIZE)]# 个体解码(二进制 -> 十进制)
def decode(individual):return individual# 选择操作(轮盘赌选择)
def selection(population, fitness_values):total_fitness = sum(fitness_values)probabilities = [f / total_fitness for f in fitness_values]cumulative_probs = [sum(probabilities[:i+1]) for i in range(len(probabilities))]selected = []for _ in range(POPULATION_SIZE):r = random.random()for i, cumulative_prob in enumerate(cumulative_probs):if r <= cumulative_prob:selected.append(population[i])breakreturn selected# 交叉操作
def crossover(parent1, parent2):if random.random() < CROSSOVER_RATE:point = random.randint(1, GENE_LENGTH - 1)mask = (1 << point) - 1child1 = (parent1 & mask) | (parent2 & ~mask)child2 = (parent2 & mask) | (parent1 & ~mask)return child1, child2return parent1, parent2# 变异操作
def mutate(individual):for i in range(GENE_LENGTH):if random.random() < MUTATION_RATE:individual ^= (1 << i)  # 翻转某个位return individual# 遗传算法主程序
def genetic_algorithm():# 初始化种群population = initialize_population()best_fitness_history = []  # 每一代的最佳适应度记录for generation in range(GENERATIONS):# 计算适应度fitness_values = [fitness_function(decode(ind)) for ind in population]best_fitness = max(fitness_values)best_fitness_history.append(best_fitness)  # 记录当前代的最佳适应度# 打印每代的最佳结果best_individual = population[fitness_values.index(best_fitness)]print(f"Generation {generation + 1}: Best fitness = {best_fitness}, Best individual = {best_individual} (Decoded: {decode(best_individual)})")# 选择操作selected_population = selection(population, fitness_values)# 交叉操作next_generation = []for i in range(0, POPULATION_SIZE, 2):parent1 = selected_population[i]parent2 = selected_population[(i + 1) % POPULATION_SIZE]child1, child2 = crossover(parent1, parent2)next_generation.extend([child1, child2])# 变异操作population = [mutate(ind) for ind in next_generation]# 返回结果和适应度历史final_fitness_values = [fitness_function(decode(ind)) for ind in population]best_individual = population[final_fitness_values.index(max(final_fitness_values))]return best_individual, max(final_fitness_values), best_fitness_history# 运行遗传算法
best_individual, best_fitness, fitness_history = genetic_algorithm()# 打印最优结果
print(f"Optimal solution: {best_individual} (Decoded: {decode(best_individual)}), Fitness: {best_fitness}")# 绘制统计图
plt.figure(figsize=(10, 6))
plt.plot(range(1, GENERATIONS + 1), fitness_history, marker='o', linestyle='-', color='b', label='Best Fitness')
plt.title("Genetic Algorithm Convergence", fontsize=14)
plt.xlabel("Generation", fontsize=12)
plt.ylabel("Fitness Value", fontsize=12)
plt.grid(True)
plt.legend()
plt.show()

相关文章:

遗传算法(Genetic Algorithm, GA)

简介 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是一种基于自然选择和遗传机制的优化算法&#xff0c;由 John Holland 于20世纪70年代提出。它是一种模拟生物进化过程的启发式搜索算法&#xff0c;被广泛应用于函数优化、机器学习、调度问题等领域。 代码说明 …...

【二分答案+倍增快速幂】课堂练习

P1678 烦恼的高考志愿 #include<bits/stdc.h> using namespace std; const int N1e55; int n,m,a[N];long long bs(int x){int l1,rn;while(l<r){int midlr>>1;if(a[mid]x) return 0;if(a[mid]>x) rmid-1;else lmid1;}//根据前驱后继返回最小差值//printf(&…...

LeetCode 力扣 热题 100道(九)反转链表(C++)

给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 方法一&#xff1a;迭代法 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNod…...

Linux之网络基础

网络发展 网络的发展可以从人与人之间的工作模式开始谈起, 人与人的工作模式反应了机器与机器的工作模式: 1. 独立模式: 在网络发展的早期计算机间处于独立模式, 计算机之间相互独立 最开始计算机之间是独立运行的, 数据之间的交互需要人用软盘等存储介质拷贝过去, 一般涉及…...

Oracle收缩表空间的简单方法

在Oracle数据库中&#xff0c;收缩表空间是一种常见的维护操作&#xff0c;可以回收未使用的空间&#xff0c;减少表空间的碎片&#xff0c;提高性能。以下是一些步骤和方法&#xff1a; 1. 识别未使用的空间 首先&#xff0c;需要识别表空间中未使用的空间。可以通过查询 DB…...

C++设计模式行为模式———中介者模式

文章目录 一、引言二、中介者模式三、总结 一、引言 中介者模式是一种行为设计模式&#xff0c; 能让你减少对象之间混乱无序的依赖关系。 该模式会限制对象之间的直接交互&#xff0c; 迫使它们通过一个中介者对象进行合作。 中介者模式可以减少对象之间混乱无序的依赖关系&…...

YB2503HV:高效率降压IC,助力电动车、太阳能设备等领域的能源转换

今天我要向大家介绍一款引人注目的产品—— YB2503HV 100V 3A SOP8内置MOS 高效率降压IC。这款单片集成芯片具备可设定输出电流的开关型降压恒压驱动器功能&#xff0c;可广泛应用于电动车、太阳能设备、电子电池充电等领域。让我们一起来看看它的特点和应用吧&#xff01; 首先…...

如何使用Jest测试你的React组件

在本文中&#xff0c;我们将了解如何使用Jest&#xff08;Facebook 维护的一个测试框架&#xff09;来测试我们的React组件。我们将首先了解如何在纯 JavaScript 函数上使用 Jest&#xff0c;然后再了解它提供的一些开箱即用的功能&#xff0c;这些功能专门用于使测试 React 应…...

微网能量管理研究

微网能量管理研究的重点 微网系统的建模 建立分布式能源单元模型以及微网系统的整体运行、协调控制和优化配置等方面的模型 分布式电源控制策略 微网内分布式电源及储能系统运行依赖于电力电子接口技术&#xff0c;需要相应的充放电控制策略 再生能源发电预测 准确预测太阳能…...

Java基础面试题02:简述什么是值传递和引用传递?

面试题&#xff1a;简述什么是值传递和引用传递&#xff1f; 什么是值传递&#xff1f; 值传递&#xff08;pass by value&#xff09;是指在调用函数时&#xff0c;把实际参数的值复制一份传递给函数。换句话说&#xff0c;函数内部对参数的任何修改&#xff0c;都不会影响到…...

【STL】10.set与map的模拟实现

一、源码及框架分析 SGI-STL30版本源代码&#xff0c;map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等及个头文件中。 map和set的实现结构框架核心部分截取出来如下&#xff1a; // set #ifndef __SGI_STL_INTERNAL_TREE_H #include <stl_tree.h> #endif …...

Playwright(Java版) - 8: Playwright 元素交互的高级应用

在自动化测试中&#xff0c;处理复杂的页面交互是常见的需求。例如&#xff0c;应对动态加载的元素、处理弹窗与对话框、模拟拖放操作&#xff0c;甚至在绘图板上进行绘图操作。 1 动态元素与弹窗处理 1.1 动态元素的加载与等待 动态页面可能会导致元素在操作时尚未完全加载&…...

播放器开发之ffmpeg 硬件解码方案

硬件编解码的概念 硬件编解码是⾮CPU通过烧写运⾏视频加速功能对⾼清视频流进⾏编解码&#xff0c;其中⾮CPU可包括GPU、FPGA或者 ASIC等独⽴硬件模块&#xff0c;把CPU⾼使⽤率的视频解码⼯作从CPU⾥分离出来&#xff0c;降低CPU的使⽤负荷&#xff0c;使得平台能 ⾼效且流畅…...

n、nvm、nrm、pnpm、yarn各种指令大全

n mac的版本管理工具&#xff08;可能与nvm冲突&#xff09; 安装 # 使用 npm / yarn npm i -g n yarn global add n # 使用 brew brew install n环境变量 export PATH"/usr/local/n/versions/node:$PATH"命令详解 版本查看 # 查看 n 版本 n --version/-V # 查…...

数据库管理-根据日期字段进行数据筛选更新数据

项目场景 数据插入、更新、查询 数据库中一张审计表格用来记录数据的操作包括数据的id&#xff0c;数据名称sjmc&#xff0c;数据状态sjzt&#xff0c;数据创建时间createtime&#xff0c;数据更新时间updatetime。 具体需求如下&#xff1a; 根据数据名称更新sjzt和update…...

03. 运算符

一、运算符与表达式 运算符 就是对字面量或者变量进行操作的符号&#xff1b;表达式 是指用运算符把字面量或者变量连接起来&#xff0c;符合 Python 语法的式子。不同运算符连接的表达式体现的是不同类型的表达式&#xff1b;Python 中的运算符主要包括 算术运算符、赋值运算符…...

【最优清零方案——贪心+滑动窗口+线段树】

题目 代码 #include <bits/stdc.h> using namespace std; using ll long long; const int N 1e6 10; int a[N]; struct node {int l, r;int m, p, lazy; } tr[4 * N]; void pushup(node &u, node &l, node &r) {if (l.m r.m){u.m l.m;u.p max(l.p, r.…...

一个点绕任意点旋转后的点的坐标

在平面坐标上&#xff0c;任意点P(x1,y1)&#xff0c;绕一个坐标点Q(x2,y2)逆时针旋转θ角度后,新的坐标设为(x, y)的计算公式&#xff1a; x (x1 - x2)*cos(θ) - (y1 - y2)*sin(θ) x2 ; y (x1 - x2)*sin(θ) (y1 - y2)*cos(θ) y2 ; 另一个场景应用&#xff0c;坐标轴绕…...

大数据面试题每日练习--HDFS是如何工作的?

HDFS&#xff08;Hadoop Distributed File System&#xff09;是一个分布式文件系统&#xff0c;设计用于存储非常大的文件。它的主要工作原理如下&#xff1a; NameNode&#xff1a;管理文件系统的命名空间&#xff0c;维护文件目录树和文件元数据信息。NameNode记录每个文件…...

Python的3D可视化库 - vedo (2)visual子模块 基本可视化行为

文章目录 1. visual模块的继承关系2. 基类CommonVisual的方法2.1 获取对象信息2.1.1 对象本身信息2.1.2 对象的查找表2.1.3 对象标量范围2.1.4 对象缩略图 2.2 呈现对象2.2.1 在窗口显示1.2.2 对象可见性 2.2.3 对象颜色2.2.4 对象透明度 2.3 添加标度条2.3.1 2D标度条2.3.2 3D…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...