深度学习中的mAP
在深度学习中,mAP是指平均精度均值(mean Average Precision),它是深度学习中评价模型好坏的一种指标(metric),特别是在目标检测中。
精确率和召回率的概念:
(1).精确率(Precision):预测阳性结果中实际正确的比例(TP / Total Predictions),预测正确的百分比,取值范围是[0, 1]。
(2).召回率(Recall):实际正样本中被正确预测的比例(TP / Total Ground Truths),取值范围是[0, 1]。在目标检测任务中,mAP能够综合考虑模型在不同召回率下的性能,从而更全面地评估模型的检测能力。
P-R曲线就是表示召回率和精确率之间关系的曲线图:如下图所示
它们的数学定义如下:
IoU(Intersection over Union,交并比):是量化两个区域重叠程度的指标,取值范围[0, 1]。我们用它来测量预测边界与真实(ground truth)目标边界的重叠程度,如下图所示:借助IoU阈值,我们可以判断预测是真阳性、假阳性还是假阴性(True Positive, False Positive, or False Negative)。在目标检测中,预测(TP、FP或FN)的正确性是在IoU阈值的帮助下决定的。而在目标分割中,它是通过参考Ground Truth像素来决定的。Ground Truth表示已知目标。
AP(Average Precision,平均精度):计算召回率在0到1之间的平均精度值。Average Precision is not the average of Precision。为简单起见,我们可以说它是精度率--召回率曲线(precision-recall curve)下的面积。AP是按类别计算的。
(1).11点插值法计算AP:11点插值法是在2007年PASCAL VOC挑战赛中引入的。其中,精确率值记录在11个等距召回率值中。以这种方式对精确率/召回率曲线进行插值的目的是减少由于样本排名(ranking of examples)的细微变化而导致的精确率/召回率曲线中的"摆动(wiggles)"的影响。实际上,评估数据集(evaluation dataset)非常巨大,当我们绘制所有预测的图表时,相邻点之间的差异将非常小。因此,11个点插值足以比较两个模型。
(2).101点插值法计算AP:MS COCO于2014年引入了101点插值AP。它是P-R曲线下AUC(Area Under the Curve)的更好近似值。
目标检测中计算AP步骤:
(1).使用模型生成预测分数(置信度)
(2).将预测分数转换为类标签
(3).由TP、FP、FN计算精确率和召回率
(4).计算精度率--召回率曲线下的面积。
(5).计算AP。
mAP:在多类别的目标检测任务中,还会计算所有类别AP的平均值,即mAP。mAP = 1/n * sum(AP),n是类别数
(1).mAP50:IoU阈值为0.5时的mAP值。
(2).mAP50-95:IoU阈值从0.5到0.95(步长为0.05)范围内的mAP值,然后计算平均值。
注:以上整理内容及原图主要来自于以下博文
https://jonathan-hui.medium.com
https://learnopencv.com
GitHub:https://github.com/fengbingchun/NN_Test
相关文章:

深度学习中的mAP
在深度学习中,mAP是指平均精度均值(mean Average Precision),它是深度学习中评价模型好坏的一种指标(metric),特别是在目标检测中。 精确率和召回率的概念: (1).精确率(Precision):预测阳性结果中实际正确的比例(TP / …...

Redis设计与实现 学习笔记 第二十章 Lua脚本
Redis从2.6版本引入对Lua脚本的支持,通过在服务器中嵌入Lua环境,Redis客户端可以使用Lua脚本,直接在服务器端原子地执行多个Redis命令。 其中EVAL命令可以直接对输入的脚本进行求值: 而使用EVALSHA命令则可以根据脚本的SHA1校验…...

大模型(LLMs)推理篇
大模型(LLMs)推理篇 1. 为什么大模型推理时显存涨的那么多还一直占着? 首先,序列太长了,有很多Q/K/V;其次,因为是逐个预测next token,每次要缓存K/V加速解码。 大模型在gpu和cpu上…...
Leetcode 412. Fizz Buzz
Problem Given an integer n, return a string array answer (1-indexed) where: answer[i] “FizzBuzz” if i is divisible by 3 and 5.answer[i] “Fizz” if i is divisible by 3.answer[i] “Buzz” if i is divisible by 5.answer[i] i (as a string) if none of t…...

双因子认证:统一运维平台安全管理策略
01双因子认证概述 双因子认证(Two-Factor Authentication,简称2FA)是一种身份验证机制,它要求用户提供两种不同类型的证据来证明自己的身份。这通常包括用户所知道的(如密码)、用户所拥有的(如…...

CMake笔记:install(TARGETS target,...)无法安装的Debug/lib下
1. 问题描述 按如下CMake代码,无法将lib文件安装到Debug/lib或Release/lib目录下,始终安装在CMAKE_INSTALL_PREFIX/lib下。 install(TARGETS targetCONFIGURATIONS DebugLIBRARY DESTINATION Debug/lib) install(TARGETS targetCONFIGURATIONS Release…...

使用ENSP实现NAT
一、项目拓扑 二、项目实现 1.路由器AR1配置 进入系统试图 sys将路由器命名为R1 sysname R1关闭信息中心 undo info-center enable进入g0/0/0接口 int g0/0/0将g0/0/0接口IP地址配置为12.12.12.1/30 ip address 12.12.12.1 30进入e0/0/1接口 int g0/0/1将g0/0/1接口IP地址配置…...

漫步北京小程序构建智慧出行,打造旅游新业态模式
近年来,北京市气象服务中心持续加强推进旅游气象服务,将旅游气象监测预警基础设施纳入景区配套工程,提升气象和旅游融合发展水平,服务建设高品质智慧旅游强市。 天气条件往往影响着旅游景观的体验,北京万云科技有限公…...

对齐输出
对齐输出 C语言代码C 语言代码Java语言代码Python语言代码 💐The Begin💐点点关注,收藏不迷路💐 输入三个整数,按每个整数占8个字符的宽度,右对齐输出它们。 输入 只有一行,包含三个整数&…...

Wekan看板安装部署与使用介绍
Wekan看板安装部署与使用介绍 1. Wekan简介 Wekan 是一个开源的看板式项目管理工具,它的配置相对简单,因为大多数功能都是开箱即用的。它允许用户以卡片的形式组织和跟踪任务,非常适合敏捷开发和日常任务管理。Wekan 的核心功能包括看板…...

VisionPro 机器视觉案例 之 黑色齿轮
第十五篇 机器视觉案例 之 齿轮齿数检测 文章目录 第十五篇 机器视觉案例 之 齿轮齿数检测1.案例要求2.实现思路2.1 统计齿轮齿数使用模板匹配工具CogPMAlignTool,并从模板匹配工具的结果集中得到每一个齿的中心点。2.2 测量距离需要知道两个坐标点,一个…...
学习python的第十三天之数据类型——函数传参中的传值和传址问题
学习python的第十三天之数据类型——函数传参中的传值和传址问题 函数传参中的传值和传址问题 函数传参的机制可以理解为传值(pass-by-value)和传址(pass-by-reference)的混合体,但实际上更接近于传对象引用ÿ…...

Windows11深度学习环境配置
CUDA、CUDNN 一、安装另一个版本的CUDA 下载.exe文件,网址打不开自己开热点就能解决:CUDA Toolkit 11.2 Downloads | NVIDIA Developer 若遇到“You already have a newer version of the NVIDIA Frameview SDK installed” 1.把电脑已经存在的FrameVi…...

电销老是被标记,该如何解决!!!
在当今的商业世界中,电话销售依然是许多企业拓展业务、接触客户的重要手段。然而,电销人员常常面临一个令人头疼的问题 —— 老是被标记。 一、电销被标记的困扰 当你的电话号码被频繁标记为 “骚扰电话”“推销电话” 等,会带来一系列不良…...

MyBatis入门——基本的增删改查
目录 一、MyBatis简介 二、搭建MyBatis (一)配置依赖 (二)log4j日志功能 (三)数据库配置文件——jdbc.properties (四)创建MyBatis的核心配置文件 (五)使用MyBatisX插件 三、项目其他配置搭建 (一)创建数据库连接工具类 (二)创建表 (三)创建数据库的实体类 (四)Use…...
学习Gentoo系统中二进制软件包和源代码包的概念
Gentoo Linux 是一个以源代码包管理和高度定制化特性著称的Linux发行版。以下是关于Gentoo系统中二进制软件包和源代码包的概念、发展历程以及它们各自的优势: 二进制软件包概念及发展历程: 概念:Gentoo的二进制软件包是指预先编译好的软件包…...
麦肯锡报告 | 未来的经济引擎:解读下一代竞争领域
随着科技和商业的快速发展,一些具有高增长性和高动态性的行业正在悄然崛起,成为推动全球经济发展的新引擎。这些行业被称为“竞争领域”(Arenas)。据麦肯锡全球研究院(MGI)的研究,这些领域有望在…...
连接mysql并读取指定表单数据到DataFrame
提问 python 如何连接mysql并读取指定表单数据到DataFrame 解答 要在Python中连接MySQL并读取指定表单数据到DataFrame,你可以使用pandas库结合sqlalchemy引擎或者mysql-connector-python。这里我将展示两种方法的示例代码。 使用pandas和sqlalchemy 确保安装了…...

从入门到精通数据结构----四大排序(上)
目录 首言: 1. 插入排序 1.1 直接插入排序 1.2 希尔排序 2. 选择排序 2.1 直接选择排序 2.2 堆排序 3. 交换排序 3.1 冒泡排序 3.2 快排 结尾: 首言: 本篇文章主要介绍常见的四大排序:交换排序、选择排序、插入排序、归并排…...

【bug】使用transformers训练二分类任务时,训练损失异常大
使用transformers训练二分类任务时,训练损失异常大 问题分析 问题 training_loss异常大,在二分类损失中,收敛在1~2附近,而eval_loss却正常(小于0.5) 分析 参考: Bug in gradient accumulation…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...

华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...