深度学习实验十二 卷积神经网络(3)——基于残差网络实现手写体数字识别实验
目录
一、模型构建
1.1残差单元
1.2 残差网络的整体结构
二、统计模型的参数量和计算量
三、数据预处理
四、没有残差连接的ResNet18
五、带残差连接的ResNet18
附:完整的可运行代码
实验大体步骤:
先前说明:
上次LeNet实验用到的那个数据集最后的准确率只有92%,但是看学长们的代码和同班同学们的运行结果都是95%+,于是我就尝试换成老师群里的数据集和学长的代码试一试,发现那个数据集运行出来的准确率只有10%。看了看同学的博客,说是换个数据集就可以了。于是我把其替换掉,发现准确率到了95.5%。好用!于是我将其放在这里,需要的同学可以自行下载。
好用的数据集:
通过网盘分享的文件:mnist.gz
链接: https://pan.baidu.com/s/10zpKj-10JgXXLnGEA-AqdA?pwd=41wb 提取码: 41wb
一、模型构建
1.1残差单元
一个残差网络通常有很多个残差单元堆叠而成。
为了减少网络的参数量,在瓶颈结构中会先试用1×1的卷积核来减少通道数,经过3×3卷记得处理后,再使用1×1的卷积恢复通道数。
代码如下:
# 残差单元算子
class ResBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1, use_residual=True):super(ResBlock, self).__init__()self.stride = strideself.use_residual = use_residual# 第一个卷积层,卷积核大小为3×3,可以设置不同输出通道数以及步长self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1, stride=self.stride)# 第二个卷积层,卷积核大小为3×3,不改变输入特征图的形状,步长为1self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)# 如果conv2的输出和此残差块的输入数据形状不一致,则use_1x1conv = True# 当use_1x1conv = True,添加1个1x1的卷积作用在输入数据上,使其形状变成跟conv2一致if in_channels != out_channels or stride != 1:self.use_1x1conv = Trueelse:self.use_1x1conv = False# 当残差单元包裹的非线性层输入和输出通道数不一致时,需要用1×1卷积调整通道数后再进行相加运算if self.use_1x1conv:self.shortcut = nn.Conv2d(in_channels, out_channels, 1, stride=self.stride)# 每个卷积层后会接一个批量规范化层,批量规范化的内容在7.5.1中会进行详细介绍self.bn1 = nn.BatchNorm2d(out_channels)self.bn2 = nn.BatchNorm2d(out_channels)if self.use_1x1conv:self.bn3 = nn.BatchNorm2d(out_channels)def forward(self, inputs):y = F.relu(self.bn1(self.conv1(inputs)))y = self.bn2(self.conv2(y))if self.use_residual:if self.use_1x1conv: # 如果为真,对inputs进行1×1卷积,将形状调整成跟conv2的输出y一致shortcut = self.shortcut(inputs)shortcut = self.bn3(shortcut)else: # 否则直接将inputs和conv2的输出y相加shortcut = inputsy = torch.add(shortcut, y)out = F.relu(y)return out
1.2 残差网络的整体结构
将ResNet18网络划分为6个模块:
·第一模块:包含了一个步长为2,大小为7×7的卷积层,卷积层的输出通道数为64,卷积层的输出经过批量归一化、ReLU激活函数的处理后,接了一个步长为2的3×3的最大汇聚层;
·第二模块:包含了两个残差单元,经过运算后,输出通道数为64,特征图的尺寸保持不变;
·第三模块:包含了两个残差单元,经过运算后,输出通道数为128,特征图的尺寸缩小一半;
·第四模块:包含了两个残差单元,经过运算后,输出通道数为256,特征图的尺寸缩小一半;
·第五模块:包含了两个残差单元,经过运算后,输出通道数为512,特征图的尺寸缩小一半;
·第六模块:包含了一个全局平均汇聚层,将特征图变为1×1的大小,最终经过全连接层计算出最后的输出。
代码如下:
# 定义模块一
def make_first_module(in_channels):# 模块一:7*7卷积、批量规范化、汇聚m1 = nn.Sequential(nn.Conv2d(in_channels, 64, 7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))return m1# 模块二到模块五
def resnet_module(input_channels, out_channels, num_res_blocks, stride=1, use_residual=True):blk = []# 根据num_res_blocks,循环生成残差单元for i in range(num_res_blocks):if i == 0: # 创建模块中的第一个残差单元blk.append(ResBlock(input_channels, out_channels,stride=stride, use_residual=use_residual))else: # 创建模块中的其他残差单元blk.append(ResBlock(out_channels, out_channels, use_residual=use_residual))return blk# 封装模块二到模块五
def make_modules(use_residual):# 模块二:包含两个残差单元,输入通道数为64,输出通道数为64,步长为1,特征图大小保持不变m2 = nn.Sequential(*resnet_module(64, 64, 2, stride=1, use_residual=use_residual))# 模块三:包含两个残差单元,输入通道数为64,输出通道数为128,步长为2,特征图大小缩小一半。m3 = nn.Sequential(*resnet_module(64, 128, 2, stride=2, use_residual=use_residual))# 模块四:包含两个残差单元,输入通道数为128,输出通道数为256,步长为2,特征图大小缩小一半。m4 = nn.Sequential(*resnet_module(128, 256, 2, stride=2, use_residual=use_residual))# 模块五:包含两个残差单元,输入通道数为256,输出通道数为512,步长为2,特征图大小缩小一半。m5 = nn.Sequential(*resnet_module(256, 512, 2, stride=2, use_residual=use_residual))return m2, m3, m4, m5# 定义完整网络
class Model_ResNet18(nn.Module):def __init__(self, in_channels=3, num_classes=10, use_residual=True):super(Model_ResNet18, self).__init__()m1 = make_first_module(in_channels)m2, m3, m4, m5 = make_modules(use_residual)# 封装模块一到模块6self.net = nn.Sequential(m1, m2, m3, m4, m5,# 模块六:汇聚层、全连接层nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(512, num_classes))def forward(self, x):return self.net(x)
二、统计模型的参数量和计算量
代码如下:
# 参数量
from torchsummary import summary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=True).to(device)
summary(model, (1, 32, 32))# 计算量
from thop import profile
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=True).to(device)
dummy_input = torch.randn(1, 1, 32, 32).to(device)flops, params = profile(model, (dummy_input,))
print(flops)
参数量:
计算量:
从输出可以看出,参数量和计算量比LeNet多的不是一点半点,LeNet的参数量是6万多,计算量是41万多,参数量上去了,运行时间肯定也就多了。
三、数据预处理
代码如下:
# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.gz'))
train_images, train_labels = train_set[0][:1000], train_set[1][:1000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))import numpy as np
import matplotlib.pyplot as plt
import PIL.Image as Imageimage, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28, 28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
plt.savefig('conv-number5.pdf')# # 定义训练集、验证集和测试集
# train_set = {"images": train_images, "labels": train_labels}
# dev_set = {"images": dev_images, "labels": dev_labels}
# test_set = {"images": test_images, "labels": test_labels}# 数据预处理
transforms = transforms.Compose([transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5])])class MNIST_dataset(data.Dataset):def __init__(self, dataset, transforms, mode='train'):self.mode = modeself.transforms = transformsself.dataset = datasetdef __getitem__(self, idx):# 从字典中获取图像和标签# image, label = self.dataset["images"][idx], self.dataset["labels"][idx]image, label = self.dataset[0][idx], self.dataset[1][idx]image, label = np.array(image).astype('float32'), int(label)image = np.reshape(image, [28, 28])image = Image.fromarray(image.astype('uint8'), mode='L')image = self.transforms(image)return image, labeldef __len__(self):# 返回图像数量# return len(self.dataset["images"])return len(self.dataset[0])# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
四、没有残差连接的ResNet18
代码如下:
time1 = time.time()
seed = 300
torch.manual_seed(seed)
torch.cuda.manual_seed(seed) # 如果使用 GPU,还可以设置 CUDA 的随机种子
torch.backends.cudnn.deterministic = True # 使得 CUDA 确定性计算
torch.backends.cudnn.benchmark = False # 防止优化导致不一致
# 学习率大小
lr = 0.005
# 批次大小
batch_size = 64
# 加载数据
train_loader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = data.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = data.DataLoader(test_dataset, batch_size=batch_size)
# 定义网络,不使用残差结构的深层网络
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=False)
# 定义优化器
optimizer = opt.SGD(lr=lr, params=model.parameters())
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化RunnerV3
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=10, log_steps=log_steps,eval_steps=eval_steps, save_path="best_model.pdparams")
time2 = time.time()
# 可视化观察训练集与验证集的Loss变化情况
plot(runner, 'cnn-loss2.pdf')# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
print("没有残差连接的ResNet18的运行时间:", time2-time1)
准确率只有66%。但是后面发现调一调参数准确率也是可以达到94.5%的,但是这里不做体现了
因为我们要确保参数一致,再去对比有误残差连接的准确率,这样对比才是有意义的,通过调参而再去对比,就少了一定的说服了,也没有意义。
五、带残差连接的ResNet18
代码如下:
time3 = time.time()
# 固定随机种子
seed = 300
torch.manual_seed(seed)
torch.cuda.manual_seed(seed) # 如果使用 GPU,还可以设置 CUDA 的随机种子
torch.backends.cudnn.deterministic = True # 使得 CUDA 确定性计算
torch.backends.cudnn.benchmark = False # 防止优化导致不一致
# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
# 学习率大小
lr = 0.005
# 批次大小
batch_size = 16
# 加载数据
train_loader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = data.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = data.DataLoader(test_dataset, batch_size=batch_size)
# 定义网络,通过指定use_residual为True,使用残差结构的深层网络
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=True)
# 定义优化器
optimizer = opt.SGD(lr=lr, params=model.parameters())
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化RunnerV3
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=10, log_steps=log_steps,eval_steps=eval_steps, save_path="best_model.pdparams")
time4 = time.time()
# 可视化观察训练集与验证集的Loss变化情况
plot(runner, 'cnn-loss3.pdf')# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
print("有残差连接的ResNet18的运行时间:", time4-time3)
有残差连接的网络比没有残差连接的网络准确率高很多,那么这是为什么呢?
![]()
ResNet的论文中提到,更深的网络有更高的训练误差,所以就会有更高的测试误差。
同时来说,随着网络深度的增加,会带来了许多优化相关的问题,比如梯度消散,梯度爆炸。也有人将其比做成一个传话游戏,就是越往后传,错误也就越高。
再举一个栗子:
假如有一个网络,输入x=1,非残差网络为G,残差网络为H,其中H(x)=F(x)+x,假如有这样的输入关系:
因为两者各自是对G的参数和F的参数进行更新,可以看出变化对F的影响远远大于G,说明引入残差后的映射对输出的变化更敏感,这样是有利于网络进行传播的。
从论文中的对比也可以看出,残差网络layer升高后,error并没有像普通网络一样也升高。
再对比运行时间:
两者虽然相差不大,但是却比LeNet5的时间长很多,LeNet5训练只需要3秒多。
附:完整的可运行代码
主代码:
time3 = time.time()
# 固定随机种子
seed = 300
torch.manual_seed(seed)
torch.cuda.manual_seed(seed) # 如果使用 GPU,还可以设置 CUDA 的随机种子
torch.backends.cudnn.deterministic = True # 使得 CUDA 确定性计算
torch.backends.cudnn.benchmark = False # 防止优化导致不一致
# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
# 学习率大小
lr = 0.005
# 批次大小
batch_size = 16
# 加载数据
train_loader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = data.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = data.DataLoader(test_dataset, batch_size=batch_size)
# 定义网络,通过指定use_residual为True,使用残差结构的深层网络
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=True)
# 定义优化器
optimizer = opt.SGD(lr=lr, params=model.parameters())
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化RunnerV3
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=10, log_steps=log_steps,eval_steps=eval_steps, save_path="best_model.pdparams")
time4 = time.time()
# 可视化观察训练集与验证集的Loss变化情况
plot(runner, 'cnn-loss3.pdf')# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
print("有残差连接的ResNet18的运行时间:", time4-time3)
nndl_3代码:
import torch
from matplotlib import pyplot as plt
from torch import nnclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)def forward(self, inputs):raise NotImplementedErrordef backward(self, inputs):raise NotImplementedError# 实现一个两层前馈神经网络
class Model_MLP_L2_V3(torch.nn.Module):def __init__(self, input_size, hidden_size, output_size):super(Model_MLP_L2_V3, self).__init__()self.fc1 = torch.nn.Linear(input_size, hidden_size)w_ = torch.normal(0, 0.01, size=(hidden_size, input_size), requires_grad=True)self.fc1.weight = torch.nn.Parameter(w_)self.fc1.bias = torch.nn.init.constant_(self.fc1.bias, val=1.0)self.fc2 = torch.nn.Linear(hidden_size, output_size)w2 = torch.normal(0, 0.01, size=(output_size, hidden_size), requires_grad=True)self.fc2.weight = nn.Parameter(w2)self.fc2.bias = torch.nn.init.constant_(self.fc2.bias, val=1.0)self.act = torch.sigmoiddef forward(self, inputs):outputs = self.fc1(inputs)outputs = self.act(outputs)outputs = self.fc2(outputs)return outputsclass RunnerV3(object):def __init__(self, model, optimizer, loss_fn, metric, **kwargs):self.model = modelself.optimizer = optimizerself.loss_fn = loss_fnself.metric = metric # 只用于计算评价指标# 记录训练过程中的评价指标变化情况self.dev_scores = []# 记录训练过程中的损失函数变化情况self.train_epoch_losses = [] # 一个epoch记录一次lossself.train_step_losses = [] # 一个step记录一次lossself.dev_losses = []# 记录全局最优指标self.best_score = 0def train(self, train_loader, dev_loader=None, **kwargs):# 将模型切换为训练模式self.model.train()# 传入训练轮数,如果没有传入值则默认为0num_epochs = kwargs.get("num_epochs", 0)# 传入log打印频率,如果没有传入值则默认为100log_steps = kwargs.get("log_steps", 100)# 评价频率eval_steps = kwargs.get("eval_steps", 0)# 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"save_path = kwargs.get("save_path", "best_model.pdparams")custom_print_log = kwargs.get("custom_print_log", None)# 训练总的步数num_training_steps = num_epochs * len(train_loader)if eval_steps:if self.metric is None:raise RuntimeError('Error: Metric can not be None!')if dev_loader is None:raise RuntimeError('Error: dev_loader can not be None!')# 运行的step数目global_step = 0# 进行num_epochs轮训练for epoch in range(num_epochs):# 用于统计训练集的损失total_loss = 0for step, data in enumerate(train_loader):X, y = data# 获取模型预测logits = self.model(X)loss = self.loss_fn(logits, y) # 默认求meantotal_loss += loss# 训练过程中,每个step的loss进行保存self.train_step_losses.append((global_step, loss.item()))if log_steps and global_step % log_steps == 0:print(f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")# 梯度反向传播,计算每个参数的梯度值loss.backward()if custom_print_log:custom_print_log(self)# 小批量梯度下降进行参数更新self.optimizer.step()# 梯度归零self.optimizer.zero_grad()# 判断是否需要评价if eval_steps > 0 and global_step > 0 and \(global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)print(f"[Evaluate] dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")# 将模型切换为训练模式self.model.train()# 如果当前指标为最优指标,保存该模型if dev_score > self.best_score:self.save_model(save_path)print(f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")self.best_score = dev_scoreglobal_step += 1# 当前epoch 训练loss累计值trn_loss = (total_loss / len(train_loader)).item()# epoch粒度的训练loss保存self.train_epoch_losses.append(trn_loss)print("[Train] Training done!")# 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度@torch.no_grad()def evaluate(self, dev_loader, **kwargs):assert self.metric is not None# 将模型设置为评估模式self.model.eval()global_step = kwargs.get("global_step", -1)# 用于统计训练集的损失total_loss = 0# 重置评价self.metric.reset()# 遍历验证集每个批次for batch_id, data in enumerate(dev_loader):X, y = data# 计算模型输出logits = self.model(X)# 计算损失函数loss = self.loss_fn(logits, y).item()# 累积损失total_loss += loss# 累积评价self.metric.update(logits, y)dev_loss = (total_loss / len(dev_loader))dev_score = self.metric.accumulate()# 记录验证集lossif global_step != -1:self.dev_losses.append((global_step, dev_loss))self.dev_scores.append(dev_score)return dev_score, dev_loss# 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度@torch.no_grad()def predict(self, x, **kwargs):# 将模型设置为评估模式self.model.eval()# 运行模型前向计算,得到预测值logits = self.model(x)return logitsdef save_model(self, save_path):torch.save(self.model.state_dict(), save_path)def load_model(self, model_path):model_state_dict = torch.load(model_path)self.model.load_state_dict(model_state_dict)class Accuracy():def __init__(self, is_logist=True):# 用于统计正确的样本个数self.num_correct = 0# 用于统计样本的总数self.num_count = 0self.is_logist = is_logistdef update(self, outputs, labels):if outputs.shape[1] == 1: # 二分类outputs = torch.squeeze(outputs, dim=-1)if self.is_logist:# logist判断是否大于0preds = torch.tensor((outputs >= 0), dtype=torch.float32)else:# 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0preds = torch.tensor((outputs >= 0.5), dtype=torch.float32)else:# 多分类时,使用'torch.argmax'计算最大元素索引作为类别preds = torch.argmax(outputs, dim=1)# 获取本批数据中预测正确的样本个数labels = torch.squeeze(labels, dim=-1)batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).numpy()batch_count = len(labels)# 更新num_correct 和 num_countself.num_correct += batch_correctself.num_count += batch_countdef accumulate(self):# 使用累计的数据,计算总的指标if self.num_count == 0:return 0return self.num_correct / self.num_countdef reset(self):# 重置正确的数目和总数self.num_correct = 0self.num_count = 0def name(self):return "Accuracy"# 可视化
def plot(runner, fig_name):plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)train_items = runner.train_step_losses[::30]train_steps = [x[0] for x in train_items]train_losses = [x[1] for x in train_items]plt.plot(train_steps, train_losses, color='#8E004D', label="Train loss")if runner.dev_losses[0][0] != -1:dev_steps = [x[0] for x in runner.dev_losses]dev_losses = [x[1] for x in runner.dev_losses]plt.plot(dev_steps, dev_losses, color='#E20079', linestyle='--', label="Dev loss")# 绘制坐标轴和图例plt.ylabel("loss", fontsize='x-large')plt.xlabel("step", fontsize='x-large')plt.legend(loc='upper right', fontsize='x-large')plt.subplot(1, 2, 2)# 绘制评价准确率变化曲线if runner.dev_losses[0][0] != -1:plt.plot(dev_steps, runner.dev_scores,color='#E20079', linestyle="--", label="Dev accuracy")else:plt.plot(list(range(len(runner.dev_scores))), runner.dev_scores,color='#E20079', linestyle="--", label="Dev accuracy")# 绘制坐标轴和图例plt.ylabel("score", fontsize='x-large')plt.xlabel("step", fontsize='x-large')plt.legend(loc='lower right', fontsize='x-large')plt.savefig(fig_name)plt.show()
这次的分享就到这里,下次再见~
相关文章:

深度学习实验十二 卷积神经网络(3)——基于残差网络实现手写体数字识别实验
目录 一、模型构建 1.1残差单元 1.2 残差网络的整体结构 二、统计模型的参数量和计算量 三、数据预处理 四、没有残差连接的ResNet18 五、带残差连接的ResNet18 附:完整的可运行代码 实验大体步骤: 先前说明: 上次LeNet实验用到的那…...

Linux系统如何排查端口占用
如何在Linux系统中排查端口占用 在Linux系统中,当您遇到网络服务无法启动或响应异常的情况时,可能是因为某个特定的端口已经被其他进程占用。这时,您需要进行端口占用情况的排查来解决问题。本文将介绍几种常用的命令行工具和方法࿰…...

Linux常用命令之id命令详解
id命令详解 id 命令在 Linux 和 Unix 系统中用于显示用户的标识信息,包括用户ID(UID)、组ID(GID)以及用户所属的附加组。这个命令对于系统管理员和开发者来说非常有用,因为它能帮助他们确认运行命令或脚本…...

WGCLOUD如何部署在ARM平台
WGCLOUD是一款开源免费的运维平台,非常强大方便,可以帮我们提高运维效率 我们项目中,大部分是ARM的服务器,那么如何部署WGCLOUD呢,其实挺简单的 首先是部署服务端server 我们只要安装好对应ARM版本的JDK,…...

K8S + Jenkins 做CICD
前言 这里会做整体CICD的思路和流程的介绍,会给出核心的Jenkins pipeline脚本,最后会演示一下 实验/实操 结果 由于整体内容较多,所以不打算在这里做每一步的详细演示 - 本文仅作自己的实操记录和日后回顾用 要看保姆式教学的可以划走了&…...

HarmonyOS4+NEXT星河版入门与项目实战(11)------Button组件
文章目录 1、控件图解2、案例实现1、代码实现2、代码解释3、运行效果4、总结1、控件图解 这里我们用一张完整的图来汇整 Button 的用法格式、属性和事件,如下所示: 按钮默认类型就是胶囊类型。 2、案例实现 这里我们实现一个根据放大和缩小按钮来改变图片大小的功能。 功…...

小米note pro一代(leo)线刷、twrp、magisk、TODO: android源码编译
本文主要说android5 整体思路 android 5.1 twrp magisk Zygisk(Riru) Dreamland(xposed) Riru不支持android5.1, 因此只能选择Zygisk : 如果你正在使用 Android 5,你必须使用 Zygisk 因为 Riru 并不支持 Android 5. 基于magisk之上的xposed 其中提到的 作者…...

鸿蒙开发Hvigor插件动态生成代码
Hvigor允许开发者实现自己的插件,开发者可以定义自己的构建逻辑,并与他人共享。Hvigor主要提供了两种方式来实现插件:基于hvigorfile脚本开发插件、基于typescript项目开发。下面以基于hvigorfile脚本开发插件进行介绍。 基于hvigorfile脚本…...

使用ENSP实现静态路由
一、双路由器静态路由 1.项目拓扑 2.项目实现 (1)路由器AR1配置 进入系统试图 sys将路由器命名为R1 sysname R1进入g0/0/0接口 int g0/0/0将g0/0/0接口IP地址配置为1.1.1.1/24 ip address 1.1.1.1 24进入g0/0/1接口 int g0/0/1将g0/0/1接口IP地址配置为192.168.1.1/24 ip ad…...

Java String 字符串常用操作
一、Java String 字符串常用操作 1、替换 Java字符模板替换 public static final String temp"private {0} {1};";public static void main(String[] args) {System.out.println(MessageFormat.format(temp,"String","str"));} replaceAll替换…...

4.4 MySQL 触发器(Trigger)
触发器是一种特殊的数据库对象,在特定事件(如INSERT、UPDATE或DELETE)触发时自动执行定义好的操作。它可以帮助我们实现更高效的数据管理和业务规则的约束。 1. 简介 1.1 什么是触发器 触发器(Trigger)是由用户定义的…...

C语言——break、continue、goto
目录 一、break 二、continue 1、在while循环中 2、在for循环中 三、go to 一、break 作用是终止循环,在循环内遇到break直接就跳出循环。 注: 一个break语句只能跳出一层循环。 代码演示: #include<stdio.h>void test01() {for (…...

oracle数据恢复总结篇
前言:数据恢复的关键 定删除时间点:首先,需要知道是什么时间进行的删除操作。 如果不能确定具体时间点,可以选择尽量准确的删除数据前的时间。 oracle数据库如果使用drop指令误删除了数据应该如何恢复呢? 如果没有进行其他操作&…...

运维面试题.云计算面试题之四.K8S
常见的k8s运维面试题 1、简述ETCD及其特点? etcd是一个用于配置共享和服务发现的键值存储系统,能够为整个分布式集群存储关键数据,协助集群正常运转 服务端将配置信息存储在etcd中,客户端从etcd中得到配置信息,etcd监听配置信息的变化,发现配置变化通知到客户端 特点 - 安…...

el-select 和el-tree二次封装
前言 本文章是本人在开发过程中,遇到使用树形数据,动态单选或多选的需求,element中没有这种组件,故自己封装一个,欢迎多多指教 开发环境:element-UI、vue2 组件效果 单选 多选 组件引用 <treeselec…...

C++11:多线程编程
目录 线程库基本用法创建线程给线程传递参数线程分离 常见数据未定义错误传递指针或引用指向局部变量的问题传递指针或引用指向已释放的内存的问题类成员函数作为入口函数,类对象被提前释放智能指针来解决该问题入口函数为类的私有成员函数 互斥量死锁 lock_guard与…...

【H2O2|全栈】JS进阶知识(八)ES6(4)
目录 前言 开篇语 准备工作 浅拷贝和深拷贝 浅拷贝 概念 常见方法 弊端 案例 深拷贝 概念 常见方法 弊端 逐层拷贝 原型 构造函数 概念 形式 成员 弊端 显式原型和隐式原型 概念 形式 constructor 概念 形式 原型链 概念 形式 结束语 前言 开篇语…...

OmniDiskSweeper :一款专为 macOS 设计的磁盘使用分析工具
OmniDiskSweeper 是一款专为 macOS 设计的磁盘使用分析工具,由 The Omni Group 开发。它的主要目的是帮助用户可视化磁盘上的文件和文件夹,并找出占用大量空间的文件,从而帮助用户释放磁盘空间。 OmniDiskSweeper 的特点包括: 简…...

【什么是Redis?】
Redis:高性能内存数据库的深度探索 在当今这个数据驱动的世界里,数据库的选择直接关系到应用程序的性能、可扩展性和可靠性。在众多数据库解决方案中,Redis以其卓越的性能、丰富的数据结构和灵活的使用场景脱颖而出,成为众多开发…...

React第十六章(useLayoutEffect)
useLayoutEffect useLayoutEffect 是 React 中的一个 Hook,用于在浏览器重新绘制屏幕之前触发。与 useEffect 类似。 用法 useLayoutEffect(() > {// 副作用代码return () > {// 清理代码}}, [dependencies]);参数 setup:Effect处理函数,可以返回…...

shell 基础知识2 ---条件测试
目录 一、条件测试的基本语法 二、文件测试表达式 三、字符串测试表达式 四、整数测试表达式 五、逻辑操作符 六、实验 为了能够正确处理 Shell 程序运行过程中遇到的各种情况, Linux Shell 提供了一组测试运算符。 通过这些运算符,Shell 程序能够…...

【线程】Java线程操作
【线程】Java线程操作 一、启动线程1.1 run()和start()的区别 二、终止线程三、等待线程四、线程的状态 一、启动线程 Java中通过start()方法来启动一个线程,其次我们要着重理解start()和run()的区别。 1.1 run()和start()的区别 我们通过一份代码来进行观察&…...

Linux内核
Linux内核是Linux操作系统的核心部分,它管理着硬件资源并提供基本的服务给用户程序。以下是Linux内核的几个关键方面: 1. 架构: 单内核设计:Linux采用的是单内核设计,这意味着所有操作系统服务都在一个地址空间内运行…...

Sentinel服务保护
Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。官方网站: home | Sentinel Sentinel 的使用可以分为两个部分: 核心库(Jar包):不依赖任何框架/库,能够运行于 Java 8 及以…...

python代码制作数据集的测试和数据质量检测思路
前言 本文指的数据集为通用数据集,并不单是给机器学习领域使用。包含科研和工业领域需要自己制作数据集的。 首先,在制作大型数据集时,代码错误和数据问题可能会非常复杂。 前期逻辑总是简单的,库库一顿写,等排查的时…...

笔记记录 k8s-install
master节点安装: yum upgrade -y 更新系统 yum update -y 升级内核 ifconfig ens33 关闭swap swapoff -a (临时) vim /etc/fstab (永久) #/dev/mapper/cl-swap swap swap defaults 0 0 vim /etc/sysctl.conf vm.swappin…...

丹摩征文活动|基于丹摩算力的可图(Kolors)的部署与使用
Kolors是一个以生成图像为目标的人工智能系统,可能采用了类似于OpenAI的DALLE、MidJourney等文本生成图像的技术。通过自然语言处理(NLP)和计算机视觉(CV)相结合,Kolors能够根据用户提供的文本描述生成符合…...

【Vue】 npm install amap-js-api-loader指南
前言 项目中的地图模块突然打不开了 正文 版本太低了,而且Vue项目就应该正经走项目流程啊喂! npm i amap/amap-jsapi-loader --save 官方说这样执行完,就这结束啦!它结束了,我还没有,不然不可能记录这篇文…...

MacOS下的Opencv3.4.16的编译
前言 MacOS下编译opencv还是有点麻烦的。 1、Opencv3.4.16的下载 注意,我们使用的是Mac,所以ios pack并不能使用。 如何嫌官网上下载比较慢的话,可以考虑在csdn网站上下载,应该也是可以找到的。 2、cmake的下载 官网的链接&…...

Android中的依赖注入(DI)框架Hilt
Hilt 是 Android 提供的一种依赖注入(DI)框架,它基于 Dagger,目的是简化依赖注入的使用,提供更易用的接口和与 Android 生命周期组件的紧密集成。下面是 Hilt 的详细介绍。 为什么选择 Hilt? 依赖注入的优势…...