丹摩 | 基于PyTorch的CIFAR-10图像分类实现
从创建实例开始的新项目流程
第一步:创建实例
- 登录 DAMODEL 平台。
- 创建一个 GPU 实例:
-
GPU 配置:选择 NVIDIA H800 或其他可用高性能 GPU。

-
系统配置:推荐使用 Ubuntu 20.04,内存 16GB,硬盘 50GB。
-
启动实例后,获取实例的 IP 地址。
-
选择镜像

-
第二步:连接实例

- 登录成功后,你会进入实例的终端界面。


第三步:更新系统和安装基础工具
-
更新系统:
sudo apt update && sudo apt upgrade -y -
安装 Python 和基础工具:
sudo apt install python3 python3-pip git -y -
(可选)安装文本编辑器:
sudo apt install vim nano -y
第四步:创建项目目录并配置环境
-
创建项目目录:
mkdir ~/workspace/cifar10_project cd ~/workspace/cifar10_project -
创建并激活虚拟环境:
python3 -m venv venv source venv/bin/activate
前面出现venu则表示已经激活虚拟环境了 -
安装必要的 Python 包:
pip install torch torchvision matplotlib

第五步:下载数据并初始化项目代码
-
创建 Python 脚本:
vim train_cifar10.py -
在文件中输入以下代码,加载 CIFAR-10 数据集并定义简单模型:
import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim# 数据预处理 transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])# 加载 CIFAR-10 数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)# 定义简单卷积神经网络 class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(32 * 16 * 16, 10)def forward(self, x):x = self.pool(torch.relu(self.conv1(x)))x = x.view(-1, 32 * 16 * 16)x = self.fc1(x)return x# 初始化模型、损失函数和优化器 net = SimpleCNN() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)# 模型训练 for epoch in range(5): # 训练 5 个周期running_loss = 0.0for inputs, labels in trainloader:optimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f"Epoch {epoch+1}, Loss: {running_loss / len(trainloader)}")print("Finished Training") -
保存并退出(按下
Esc,然后输入:wq)。
第六步:运行训练脚本
运行脚本进行模型训练:
python train_cifar10.py
- 脚本会下载 CIFAR-10 数据集并训练模型。
- 训练完成后会输出每个 epoch 的损失值。

第七步:保存和测试模型
-
保存模型:在脚本末尾添加代码以保存训练好的模型:
torch.save(net.state_dict(), "cifar10_model.pth") print("Model saved as cifar10_model.pth") -
重新运行脚本以保存模型:
python train_cifar10.py -
检查是否生成了
cifar10_model.pth文件:ls -
测试模型(可选):加载保存的模型并在测试集上评估准确率:
net.load_state_dict(torch.load("cifar10_model.pth")) net.eval() correct = 0 total = 0 with torch.no_grad():for inputs, labels in testloader:outputs = net(inputs)_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f"Accuracy on test dataset: {100 * correct / total}%")
第八步:清理和扩展
-
扩展功能:
- 使用更复杂的模型(如 ResNet)。
- 尝试使用 Adam 优化器提高性能。
- 可视化训练过程或模型预测结果。
-
清理资源:
- 如果完成训练并不再需要 GPU 计算,记得停止或删除实例以节省费用。
\
相关文章:
丹摩 | 基于PyTorch的CIFAR-10图像分类实现
从创建实例开始的新项目流程 第一步:创建实例 登录 DAMODEL 平台。创建一个 GPU 实例: GPU 配置:选择 NVIDIA H800 或其他可用高性能 GPU。 系统配置:推荐使用 Ubuntu 20.04,内存 16GB,硬盘 50GB。 启…...
C#变量和函数如何和unity组件绑定
1.Button On_click (1)GameObject通过Add component添加上Script (2)Button选GameObject组件而不是直接选Script,直接选Script出现不了Script中的函数 2.RawImage 上面是错的 3.Text 上面是错的,应该是直接在GameObject里面填上对应的值 总结: …...
AI模型---安装cuda与cuDNN
1.安装cuda 先打开cmd 输入nvidia-smi 查看显卡支持cuda对应的版本: 然后去英伟达官网下载cuda(外网多刷几次) https://developer.nvidia.com/cuda-toolkit-archive 注意对应版本 安装过程中如果显示如下图: 请安装visual Stu…...
【大数据学习 | Spark-Core】Spark提交及运行流程
spark的集群运行结构 我们要选择第一种使用方式 命令组成结构 spark-submit [选项] jar包 参数 standalone集群能够使用的选项。 --master MASTER_URL #集群地址 --class class_name #jar包中的类 --executor-memory MEM #executor的内存 --executor-cores NUM # executor的…...
内网渗透横向移动1
1.信息收集 (1)判断域控 shell net time /domain shell ping OWA2010CN-God.god.org (2)主机探测 浏览探测->网络探测 主机列表显示: (3)域用户收集: shell net user /domain…...
现代密码学
概论 计算机安全的最核心三个关键目标(指标)/为:保密性 Confidentiality、完整性 Integrity、可用性 Availability ,三者称为 CIA三元组 数据保密性:确保隐私或是秘密信息不向非授权者泄漏,也不被非授权者使…...
Pod 动态分配存储空间实现持久化存储
配置 Pod 以使用 PersistentVolume 作为存储 关于持久卷的介绍,可以看官方文档 https://kubernetes.io/zh-cn/docs/concepts/storage/persistent-volumes/ 持久卷根据存储位置,可以使用本地存储和云存储,如果有云服务平台,…...
Jackson、Gson、FastJSON三款JSON利器比拼
在Java领域,有多种JSON工具包,比如Jackson、Gson、FastJSON,每家都各有所长,下面我们从性能、特性、生态、易用 性等几个方面来展开下: 一、Jackson 性能 Jackson是一款高性能的JSON处理库。它在序列化和反序列化操作…...
php:nginx如何配置WebSocket代理?
在nginx配置中加入以下配置即可: server {listen 80;server_name test.com;# 配置 WebSocket 代理location /ws {proxy_pass http://127.0.0.1:8083;proxy_http_version 1.1;proxy_set_header Upgrade $http_upgrade;proxy_set_header Connection "upgrade&qu…...
3349、检测相邻递增子数组 Ⅰ
3349、[简单] 检测相邻递增子数组 Ⅰ 1、题目描述 给你一个由 n 个整数组成的数组 nums 和一个整数 k,请你确定是否存在 两个 相邻 且长度为 k 的 严格递增 子数组。具体来说,需要检查是否存在从下标 a 和 b (a < b) 开始的 两个 子数组,…...
C++笔记之函数入参传递std::unique_ptr 时使用 std::move的场景
C++笔记之函数入参传递std::unique_ptr 时使用 std::move的场景 code review! 参考笔记 C++笔记之unique_ptr转移堆内空间的所有权 文章目录 C++笔记之函数入参传递std::unique_ptr 时使用 std::move的场景一.使用 std::unique_ptr 作为函数参数时的主要场景二.一个完整示例一…...
怎么只提取视频中的声音?从视频中提取纯音频技巧
在数字媒体的广泛应用中,提取视频中的声音已成为一项常见且重要的操作。无论是为了学习、娱乐、创作还是法律用途,提取声音都能为我们带来诸多便利。怎么只提取视频中的声音?本文将详细介绍提取声音的原因、工具、方法以及注意事项。 一、为什…...
数仓工具—Hive语法之窗口函数中的 case when
窗口函数中的 case when 今天我们看一下窗口函数和case when 的各种花活,最近的需求各种窗口,一个需求中十几个窗口,加上各种条件边界,所以写了大量的窗口函数和case when的组合,今天我们来看一下。 我们的数据如下 %spark.pyspark df2 = spark.createDataFrame([(&quo…...
基于微信小程序的酒店客房管理系统+LW示例参考
1.项目介绍 系统角色:管理员、员工、普通用户功能模块:员工管理、用户管理、客房管理、预订管理、商品管理、评价管理、续订管理、订单管理等技术选型:SSM,vue,uniapp等测试环境:idea2024,jdk1…...
Elasticsearch客户端在和集群连接时,如何选择特定的节点执行请求的?
大家好,我是锋哥。今天分享关于【Elasticsearch客户端在和集群连接时,如何选择特定的节点执行请求的?】面试题。希望对大家有帮助; Elasticsearch客户端在和集群连接时,如何选择特定的节点执行请求的? 100…...
【AI最前线】DP双像素sensor相关的AI算法全集:深度估计、图像去模糊去雨去雾恢复、图像重建、自动对焦
Dual Pixel 简介 双像素是成像系统的感光元器件中单帧同时生成的图像:通过双像素可以实现:深度估计、图像去模糊去雨去雾恢复、图像重建 成像原理来源如上,也有遮罩等方式的pd生成,如图双像素视图可以看到光圈的不同一半&#x…...
CTF之密码学(Polybius密码)
棋盘密码,也称为Polybius密码或方格密码,是一种基于替换的加密方法。以下是对棋盘密码的详细解析: 一、加密原理 棋盘密码使用一个5x5的方格棋盘,其中填充了26个英文字母(通常i和j被视为同一个字母并放在同一个格子中…...
【C++篇】从售票窗口到算法核心:C++队列模拟全解析
文章目录 须知 💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力! 👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗࿱…...
clipboard
clipboard 现代复制到剪贴板。无闪光。只有 3kb 的 gzip 压缩。 安装 npm install clipboard --save第三方cdn提供商 <script src"https://cdn.jsdelivr.net/npm/clipboard2.0.11/dist/clipboard.min.js"></script>使用 data-clipboard-target"…...
【Mac】VMware Fusion Pro 安装 CentOS 7
1、下载镜像 CentOS 官网阿里云镜像网易镜像搜狐镜像 Mac M1芯片无法直接使用上述地址下载的最新镜像(7.9、9),会一直卡在安装界面(在 install 界面按 enter 回车无效),想要使用需要经过一系列操作&#…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
