当前位置: 首页 > news >正文

在Elasticsearch中,是怎么根据一个词找到对应的倒排索引的?

大家好,我是锋哥。今天分享关于【在Elasticsearch中,是怎么根据一个词找到对应的倒排索引的?】面试题。希望对大家有帮助;

在Elasticsearch中,是怎么根据一个词找到对应的倒排索引的?

在 Elasticsearch 中,倒排索引(Inverted Index)是查询高效性的核心。倒排索引将每个词(token)映射到包含该词的文档列表,这使得 Elasticsearch 能够迅速确定哪些文档包含某个查询词。具体来说,当你执行一个搜索请求时,Elasticsearch 会查找倒排索引来定位包含查询词的文档。以下是如何在 Elasticsearch 中根据一个词找到对应的倒排索引的详细步骤:

1. 文档和字段的索引结构

Elasticsearch 是基于 Lucene 的,索引的核心是倒排索引。在 Elasticsearch 中,文档是以 JSON 格式存储的,每个文档可以包含多个字段,每个字段又可以有不同的数据类型(如 textkeyworddate 等)。通常,文本字段(如文章的标题或正文)会被分词(tokenize),每个词或词组都会生成一个 token

当你向 Elasticsearch 索引文档时,系统会自动分析每个字段的内容,并为该字段生成倒排索引。

2. 倒排索引的结构

倒排索引的基本构成如下:

  • 术语表(Terms): 倒排索引的术语表(terms)记录了所有出现过的词(token)。这些词就是你查询时使用的关键词。
  • 倒排列表(Posting List): 对于术语表中的每个词,会有一个倒排列表,倒排列表包含了所有包含该词的文档 ID(以及可能的位置信息)。倒排列表的形式通常是一个文档 ID 的列表,但有时还会包含该词在文档中出现的频率或位置等额外信息。

例如,假设我们有以下三篇文档:

  • 文档 1: "Elasticsearch is a search engine"
  • 文档 2: "Elasticsearch powers search solutions"
  • 文档 3: "Search engines are powerful tools"

在 Elasticsearch 中,首先会进行分词处理(假设使用默认的标准分词器),得到以下词汇:

  • 文档 1: ["elasticsearch", "is", "a", "search", "engine"]
  • 文档 2: ["elasticsearch", "powers", "search", "solutions"]
  • 文档 3: ["search", "engines", "are", "powerful", "tools"]

然后,这些词汇会被放入倒排索引中,倒排索引的基本形式可能如下:

  • "elasticsearch" → [文档 1, 文档 2]
  • "search" → [文档 1, 文档 2, 文档 3]
  • "engine" → [文档 1, 文档 3]
  • "powers" → [文档 2]
  • "solutions" → [文档 2]
  • "engines" → [文档 3]
  • "are" → [文档 3]
  • "powerful" → [文档 3]
  • "tools" → [文档 3]

3. 倒排索引的构建过程

当你向 Elasticsearch 插入文档时,索引会经历以下过程来创建倒排索引:

  • 文本分析:

    • 每个字段(特别是 text 类型字段)会经过 分析器(analyzer)处理。分析器会首先对文本进行 分词,即将文本内容切分成独立的单词(tokens)。
    • 分词之后,文本还会经过 标准化处理,如将大写字母转换为小写字母、去除停用词(例如 "and"、"the" 等)等,具体处理方式由分析器的配置决定。
  • 构建倒排索引:

    • 分词后的每个 token 会被索引,并与对应的文档 ID 关联。例如,如果某个词出现在多个文档中,该词的倒排列表就会记录所有包含该词的文档 ID。
    • Elasticsearch 将倒排索引按词语存储到一个词典(或称术语表)中。

4. 查询时的倒排索引查找

当你发起查询时,Elasticsearch 会通过以下步骤根据查询词找到倒排索引并快速定位相关文档:

4.1 查询解析

假设你提交了以下查询:

{"query": {"match": {"message": "search engine"}}
}

查询中的 "search engine" 会被分词为 ["search", "engine"]

4.2 查找倒排索引

Elasticsearch 会在倒排索引中查找每个分词:

  • 查找 "search":根据倒排索引,Elasticsearch 查到 "search" 出现在文档 1、文档 2 和文档 3 中。
  • 查找 "engine":根据倒排索引,Elasticsearch 查到 "engine" 出现在文档 1 和文档 3 中。
4.3 合并结果

然后,Elasticsearch 会将这两个查询的结果合并。对于 match 查询,默认的行为是 交集:即返回同时包含 "search""engine" 的文档。因此,最终匹配的文档是文档 1 和文档 3。

4.4 计算相关性

Elasticsearch 还会根据每个文档中查询词的出现频率、文档长度等因素计算相关性分数(score)。分数较高的文档会排在前面。

5. 倒排索引的优化

倒排索引的结构本身是高度优化的,以支持高效的查询:

  • 压缩存储: 倒排索引会进行压缩存储,以节省空间。常见的压缩方式包括 delta 编码 和 前缀编码,这些方法可以显著减小索引的存储空间。
  • 位置存储: 对于一些特殊类型的查询(如短语查询、近似查询),Elasticsearch 还会记录词语在文档中的 位置,以支持精确的短语匹配。

总结

Elasticsearch 使用倒排索引来高效地支持搜索操作。每个查询词在倒排索引中都有一个倒排列表,列表中包含了包含该词的所有文档 ID。查询时,Elasticsearch 通过查找这些倒排列表,快速找出相关文档,然后根据相关性进行排序和过滤。通过使用倒排索引,Elasticsearch 能够在海量数据中快速定位到匹配的文档,从而提供高效的搜索性能。

相关文章:

在Elasticsearch中,是怎么根据一个词找到对应的倒排索引的?

大家好,我是锋哥。今天分享关于【在Elasticsearch中,是怎么根据一个词找到对应的倒排索引的?】面试题。希望对大家有帮助; 在Elasticsearch中,是怎么根据一个词找到对应的倒排索引的? 在 Elasticsearch 中…...

1992-2021年 各省市县经过矫正的夜间灯光数据(GNLD、VIIRS)区域汇总:省份、城市、区县面板数据

1992-2021年 各省市县经过矫正的夜间灯光数据(GNLD、VIIRS)区域汇总:省份、城市、区县面板数据 .r.rar https://download.csdn.net/download/2401_84585615/90001905 从1992年至2021年,中国各省份、城市及区县的夜间灯光数据经过…...

linux实战-黑链——玄机靶场

黑链的特征: 隐藏链接:黑链通常隐藏在网站页面中,使用CSS、JavaScript或其他手段使其对普通用户不可见,但仍然能被搜索引擎爬虫检测到。恶意内容:这些链接指向的内容可能包含恶意软件、钓鱼页面或其他不良内容&#x…...

鸿蒙NEXT开发案例:字数统计

【引言】 本文将通过一个具体的案例——“字数统计”组件,来探讨如何在鸿蒙NEXT框架下实现这一功能。此组件不仅能够统计用户输入文本中的汉字、中文标点、数字、以及英文字符的数量,还具有良好的用户界面设计,使用户能够直观地了解输入文本…...

uniapp vue2项目迁移vue3项目

uniapp vue2项目迁移vue3项目,必须适配的部分 一、main.js 创建应用实例 // 之前 - Vue 2 import Vue from vue import App from ./App Vue.config.productionTip false // vue3 不再需要 App.mpType app // vue3 不再需要 const app new Vue({ ...App }) …...

16.C++STL 3(string类的模拟,深浅拷贝问题)

⭐本篇重点:string类的模拟,自己实现一个简单的string类 ⭐本篇代码:c学习/05.string类的学习 橘子真甜/c-learning-of-yzc - 码云 - 开源中国 (gitee.com) 目录 一. 经典string类的模拟 1.1 深浅拷贝问题 1.2 使用深拷贝完成经典string类的…...

神经网络10-Temporal Fusion Transformer (TFT)

Temporal Fusion Transformer (TFT) 是一种专为时序数据建模而设计的深度学习模型,它结合了Transformer架构和其他技术,旨在有效地处理和预测时序数据中的复杂模式。TFT 于 2020 年由 Google Research 提出,旨在解决传统模型在时序预测中的一…...

“iOS profile文件与私钥证书文件不匹配”总结打ipa包出现的问题

目录 文件和证书未加载或特殊字符问题 证书过期或Profile文件错误 确认开发者证书和私钥是否匹配 创建证书选择错误问题 申请苹果 AppId时勾选服务不全问题 ​总结 在上线ios平台的时候,在Hbuilder中打包遇见了问题,生成ipa文件时候,一…...

《图像梯度与常见算子全解析:原理、用法及效果展示》

简介:本文深入探讨图像梯度相关知识,详细介绍图像梯度是像素灰度值在不同方向的变化速度,并以 “pig.JPG” 图像为例,通过代码展示如何选取图像部分区域并分析其像素值以论证图像梯度与边缘信息的关联。接着全面阐述了 Sobel 算子&#xff0c…...

【c++篇】:探索c++中的std::string类--掌握字符串处理的精髓

✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨文章所属专栏:c篇–CSDN博客 文章目录 前言一.std::string对象的创建二.std::string对象的访问三.std::str…...

LlamaIndex ollama 搭建本地RAG应用,建立本地知识库

目录 简介安装前的准备下载ollama创建llamaindex conda环境,为后面编码作准备 环境变量迁移ollama到其他盘运行ollama方式一方式二禁止ollama开机自启动运行第一个模型 Chatbox聊天下载Chatbox配置ollama地址和模型验证 建立自身特定知识数据搭配大语言模型创建项目…...

draggable的el-dialog实现对话框标题可以选择

请看图 这个对话框使用了el-dialog并且draggable属性设置成了true,所以标题栏这里就可以拖动,现在用户想选中标题栏的文本进而复制。我看到这个需求头都大了。 我能想到的方案有三个:1. 取消draggable为true 2. 标题文案后面加一个复制按钮 …...

2024年Android面试总结

2024年Android面试总结 1.动画类型有哪些?插值器原理? 2.StringBuffer和StringBuilder区别? 3.jvm内存模型? 4.线程池7大核心参数及原理? 5.Android多进程通信方式有哪些?各自的优缺点? 6…...

树莓派3:64位系统串口(UART)使用问题的解决方法

前言 当我们要使用串口进行zigbee的短距离通信时,发现无法使用串口. 原因 树莓派3bCPU内部有两个串口,一个硬件串口(就是我们平时使用的UART),还有一个迷你串口(mini-uart),在老版本的树莓派中把硬件串口分配在GPIO上,可以单独使用.但是在新的树莓派中官方把硬件串口给了蓝牙…...

SemiDrive E3 硬件设计系列---唤醒电路设计

一、前言 E3 系列芯片是芯驰半导体高功能安全的车规级 MCU,对于 MCU 的硬件设计部分,本系列将会分模块进行讲解,旨在介绍 E3 系列芯片在硬件设计方面的注意事项与经验,本文主要讲解 E3 硬件设计中唤醒电路部分的设计。 二、RTC 模…...

淘宝接口高并发采集核心要点解读,开启电商数据智能应用新纪元

一、引言 在电商蓬勃发展的今天,淘宝作为全球知名的电商巨头,其平台上的数据犹如一座蕴藏无限价值的宝藏。准确且高效地采集淘宝接口数据,并通过高并发技术实现大规模数据获取,对于电商企业的精准营销、市场趋势分析、竞品监测以及…...

C#里怎么样快速使用LINQ实现查询?

C#里怎么样快速使用LINQ实现查询? 在C#里使用LINQ,是一个方便的功能, 不过,要学会使用这部分的功能,需要比较多的学习时间,否则,使用起就比较难。 因为它的表现方式,与编程语言通用的功能,还是差别比较大。 当数据量比较小,没有特定的顺序时,使用LINQ访问会比较好…...

2024新版微软edge浏览器输入百度网址时自动补全tn=68018901……小尾巴的解决

以前一直是Windows11 21h2版本,浏览器内输入baidu不会自动补全tnxx的百度推广小尾巴。然后前几天在BIOS内开启了tpm2.0,升级Windows11到了24h2版本。 发现在edge浏览器内只要输入b,就会自动补全为baidu.com?tnXXX的这么一个百度推广形式。开…...

uni-app打包H5自定义微信分享

1、配置分享信息 修改uni-app的index.html,添加Open Graph(OG)标签来配置分享信息。 <!DOCTYPE html> <html lang="en"><head><meta charset="UTF-8" /><meta name="description" content="标题"/>…...

大模型专栏--大模型应用场景

紧接着第一篇&#xff0c;什么是大模型&#xff0c;这篇文章讨论一下大模型的应用场景和应用方式有哪些&#xff1f; 基础使用 随着 GPT 的出现&#xff0c;AI 大模型已经越来越多得出现在日常生活和学术研究&#xff0c;工作中。 按照使用方向有以下几种&#xff1a; 自然语…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...