Matlab 深度学习工具箱 案例学习与测试————求二阶微分方程
clc
clear% 定义输入变量
x = linspace(0,2,10000)';% 定义网络的层参数
inputSize = 1;
layers = [featureInputLayer(inputSize,Normalization="none")fullyConnectedLayer(10)sigmoidLayerfullyConnectedLayer(1)sigmoidLayer];
% 创建网络
net = dlnetwork(layers);% 训练轮数
numEpochs = 15;
% 每个Batch的数据个数
miniBatchSize = 100;

% SGDM优化方法设置的参数
initialLearnRate = 0.5;
learnRateDropFactor = 0.5;
learnRateDropPeriod = 5;
momentum = 0.9;
velocity = [];

% 损失函数里面考虑初始条件的系数
icCoeff = 7;% ArrayDatastore
ads = arrayDatastore(x,IterationDimension=1);
% 创建一个用于处理管理深度学习数据的对象
mbq = minibatchqueue(ads, ...MiniBatchSize=miniBatchSize, ...PartialMiniBatch="discard", ...MiniBatchFormat="BC");% 用于迭代过程监控
numObservationsTrain = numel(x);
numIterationsPerEpoch = floor(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;% 创建监控对象
% 由于计时器在您创建监控器对象时启动,因此请确保在靠近训练循环的位置创建对象。
monitor = trainingProgressMonitor( ...Metrics="LogLoss", ...Info=["Epoch" "LearnRate"], ...XLabel="Iteration");% Train the network using a custom training loop
epoch = 0;
iteration = 0;
learnRate = initialLearnRate;
start = tic;% Loop over epochs.
while epoch < numEpochs && ~monitor.Stopepoch = epoch + 1;% Shuffle data,打乱数据.mbq.shuffle% Loop over mini-batches.while hasdata(mbq) && ~monitor.Stopiteration = iteration + 1;% Read mini-batch of data.X = next(mbq);% Evaluate the model gradients and loss using dlfeval and the modelLoss function.[loss,gradients] = dlfeval(@modelLoss, net, X, icCoeff);% Update network parameters using the SGDM optimizer.[net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);% Update the training progress monitor.recordMetrics(monitor,iteration,LogLoss=log(loss));updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);monitor.Progress = 100 * iteration/numIterations;end% Reduce the learning rate.if mod(epoch,learnRateDropPeriod)==0learnRate = learnRate*learnRateDropFactor;end
endxTest = linspace(0,4,1000)';yModel = minibatchpredict(net,xTest);yAnalytic = exp(-xTest.^2);figure;
plot(xTest,yAnalytic,"-")
hold on
plot(xTest,yModel,"--")
legend("Analytic","Model")
在深度学习中,被求导的对象(样本/输入)一般是多元的(向量x),绝大多数情况是标量y对向量x进行求导,很少向量y对向量x进行求导,否则就会得到复杂的微分矩阵。所以经常把一个样本看做一个整体,它包含多个变量(属性),对其所有属性求导后再加和,就得到了这个样本的偏导数之和。
% 损失函数
function [loss,gradients] = modelLoss(net, X, icCoeff)% 前向传播计算y = forward(net,X);% Evaluate the gradient of y with respect to x. % Since another derivative will be taken, set EnableHigherDerivatives to true.dy = dlgradient(sum(y,"all"),X,EnableHigherDerivatives=true);% Define ODE loss.eq = dy + 2*y.*X;% Define initial condition loss.ic = forward(net,dlarray(0,"CB")) - 1;% Specify the loss as a weighted sum of the ODE loss and the initial condition loss.loss = mean(eq.^2,"all") + icCoeff * ic.^2;% Evaluate model gradients.gradients = dlgradient(loss, net.Learnables);end相关文章:
Matlab 深度学习工具箱 案例学习与测试————求二阶微分方程
clc clear% 定义输入变量 x linspace(0,2,10000);% 定义网络的层参数 inputSize 1; layers [featureInputLayer(inputSize,Normalization"none")fullyConnectedLayer(10)sigmoidLayerfullyConnectedLayer(1)sigmoidLayer]; % 创建网络 net dlnetwork(layers);% 训…...
django authentication 登录注册
文章目录 前言一、django配置二、后端实现1.新建app2.编写view3.配置路由 三、前端编写1、index.html2、register.html3、 login.html 总结 前言 之前,写了django制作简易登录系统,这次利用django内置的authentication功能实现注册、登录 提示ÿ…...
三种蓝牙架构实现方案
一、蓝牙架构方案 1、hostcontroller双芯片标准架构 手机里面包含很多SoC或者模块,每颗SoC或者模块都有自己独有的功能,比如手机应用跑在AP芯片上,显示屏,3G/4G通信,WiFi/蓝牙等都有自己专门的SoC或者模块࿰…...
ffmpeg 视频滤镜:高斯模糊-gblur
滤镜描述 gblur 官网地址 > FFmpeg Filters Documentation 这个滤镜会将视频变得模糊。 滤镜使用 参数 gblur AVOptions:sigma <float> ..FV.....T. set sigma (from 0 to 1024) (default 0.5)steps <int> ..FV.....T…...
期权懂|在期权市场中,如何用好双买期权?
期权小懂每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 在期权市场中,如何用好双买期权? 期权双买操作,即同时买入认购期权(看涨期权)和认沽期权(看跌期权…...
【Linux学习】【Ubuntu入门】2-3 make工具和makefile引入
1.使用命令新建三个.c文件vi main.c,vi input.c,vi caclcu.c,两个.h文件vi input.h,vi caclcu.h 2.vi Makefile:新建Makefile文件,输入一下内容 注意:命令列表中每条命令前用TAB键,不…...
《黑神话:悟空》游戏辅助修改器工具下载指南与操作方法详解
《黑神话:悟空》是一款备受期待的动作冒险游戏,目前尚未正式发布。游戏开发团队一直在强调游戏的完整性和公平性,因此官方并不支持任何形式的作弊或修改行为。然而,对于一些玩家而言,使用辅助修改器可能会成为他们体验…...
C语言菜鸟入门·关键字·union的用法
目录 1. 简介 2. 访问成员 2.1 声明 2.2 赋值 3. 共用体的大小 4. 与typedef联合使用 5. 更多关键字 1. 简介 共用体(union)是一种数据结构,它允许在同一内存位置存储不同的数据类型,但每次只能存储其中一种类型的…...
ensp静态路由实验
一、实验目的 1、熟练掌握交换机的基本配置命令 2、熟练掌握静态路由的使用方法 3. 熟练掌握交换机端口模式 二、实验内容 需求: 根据要求利用现有实验设备组建小型局域网 实验设备: 交换机S37002台;PC机2台;路由器2台。 …...
构建 Java Web 应用程序:从 Servlet 到数据库交互(Eclipse使用JDBC连接Mysql数据库)
第 1 部分:环境设置 安装 Java Development Kit (JDK):下载并安装 JDK。设置 IDE:安装并配置 IDE(如 IntelliJ IDEA 或 Eclipse)。安装数据库:下载并安装 MySQL 数据库。配置数据库:创建数据库…...
mfc100u.dll是什么?分享几种mfc100u.dll丢失的解决方法
mfc100u.dll 是一个动态链接库(DLL)文件,属于 Microsoft Foundation Classes (MFC) 库的一部分。MFC 是微软公司开发的一套用于快速开发 Windows 应用程序的 C 类库。mfc100u.dll 文件包含了 MFC 库中一些常用的函数和类的定义,这…...
Java面试之多线程并发篇
前言 本来想着给自己放松一下,刷刷博客,突然被几道面试题难倒!说一说自己对于 synchronized 关键字的了解?说说自己是怎么使用 synchronized 关键字?什么是线程安全?Vector是一个线程安全类吗?…...
视频推拉流EasyDSS互联网直播点播平台技术特点及应用场景剖析
在数字科技日新月异的今天,视频直播和点播已经成为互联网内容传播的重要方式之一。而互联网直播点播平台EasyDSS作为功能强大的流媒体直播点播视频能力平台,提供了一站式的视频推拉流、转码、直播、点播、时移回放、存储等视频服务,广泛应用于…...
安全加固方案
交换机安全加固 查看是否关闭未使用的接口 25GE1/0/1、25GE1/0/47、25GE1/0/48需要使用,暂不关闭 system-view # interface Eth-Trunk99 shutdown quit interface Eth-Trunk100 shutdown quit interface Eth-Trunk110 shutdown quit interface 25GE1/…...
Linux firewall防火墙规则
官网 https://firewalld.org/ 查看所有防火墙规则: firewall-cmd --list-all-zones查看当前区域防火墙规则: firewall-cmd --list-all添加一个开放服务规则: firewall-cmd --add-servicessh删除一个开放服务规则: firewall-cmd…...
速盾:CDN缓存的工作原理是什么?
CDN(内容分发网络)是一种将内容分发到全球不同地理位置的网络架构,以提供更快速、可靠的内容传输。其核心原理是利用缓存技术,将数据内容分布到离用户最近的边缘节点上。当用户请求内容时,CDN将根据用户的IP地址&#…...
日常开发记录-正确的prop传参,reduce搭配promise的使用
日常开发记录-正确的prop传参,reduce搭配promise的使用 1.正确的prop传参2.reduce搭配promise的使用 1.正确的prop传参 一般会的父组件传参子组件 //父组件 <A :demodata.sync"testData" :listData.sync"testData2"></A> data ()…...
Hyper-V配置-cnblog
启用Hyper-V以在 Windows 10上创建虚拟机 (1)控制面板检查系统要求: 确保您的计算机符合 Hyper-V 的系统要求。通常情况下,您的计算机需要运行 Windows 10 专业版、企业版或教育版,并且具有启用了虚拟化技术的处理器。…...
运维Tips:Docker或K8s集群拉取Harbor私有容器镜像仓库配置指南
[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] Docker与Kubernetes集群拉取Harbor私有容器镜像仓库配置 描述:在现在微服务、云原生的环境下,通常我们会在企业中部署Docker和Kubernetes集群,并且会在企业内部搭建Harbor私有镜像仓库以保证开发源码安全,以及加快…...
openssl颁发包含主题替代名的证书–SAN
原文地址:openssl颁发包含主题替代名的证书–SAN – 无敌牛 欢迎参观我的个人博客:无敌牛 – 技术/著作/典籍/分享等 在 X.509 证书中,commonName(CN)字段只能有一个值。如果让证书支持多个域名和IP地址,…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
