【代码pycharm】动手学深度学习v2-08 线性回归 + 基础优化算法
课程链接
线性回归的从零开始实现
import random
import torch
from d2l import torch as d2l# 人造数据集
def synthetic_data(w,b,num_examples):X=torch.normal(0,1,(num_examples,len(w)))y=torch.matmul(X,w)+by+=torch.normal(0,0.01,y.shape) # 加入噪声return X,y.reshape(-1,1) # y从行向量转为列向量
true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=synthetic_data(true_w,true_b,1000)print('features:',features[0],'\nlabels:',labels[0])#绘图展示
d2l.set_figsize()
d2l.plt.scatter(features[:,1].detach().numpy(),labels.detach().numpy(),1);
d2l.plt.show()
# 读数据集
def data_iter(batch_size,features,labels):num_examples=len(features) #看一下有多少个样本indices=list(range(num_examples))# 生成0-999的元组,然后将range()返回的可迭代对象转为一个列表random.shuffle(indices)# 将序列的所有元素随机排序(打乱下标)for i in range(0,num_examples,batch_size): #从0到最后,每次取batch_size个大小batch_indices=torch.tensor(indices[i:min(i+batch_size,num_examples)]) #超出样本个数没有拿满的话取最小值yield features[batch_indices],labels[batch_indices]batch_size=10
for X,y in data_iter(batch_size,features,labels):#给一些样本标号,每一次随机从里面选取b个样本返回print(X,'\n',y)break#定义初始化模型参数
w=torch.normal(0,0.01,size=(2,1),requires_grad=True)
b=torch.zeros(1,requires_grad=True)
#定义模型
def linreg(X,w,b):return torch.matmul(X,w)+b#定义损失函数
def squared_loss(y_hat,y): #均方损失return (y_hat-y.reshape(y_hat.shape))**2/2
#定义优化算法
def sgd(params,lr,batch_size):with torch.no_grad():for param in params:param-=lr*param.grad/batch_sizeparam.grad.zero_()#训练过程
lr=0.03
num_epochs=3
net=linreg
loss=squared_loss
for epoch in range(num_epochs):for X,y in data_iter(batch_size,features,labels):l=loss(net(X,w,b),y)l.sum().backward()sgd([w,b],lr,batch_size)with torch.no_grad():train_l=loss(net(features,w,b),labels)print(f'epoch{epoch+1},loss{float(train_l.mean()):f}')#比较真实参数和训练得来的参数评估训练的成功程度
print(f'w的估计误差:{true_w-w.reshape(true_w.shape)}')
print(f'b的估计误差:{true_b-b}')
运行结果
 
 
线性回归的简洁实现
import random
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
from torch import nn
#使用框架生成数据集
true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=d2l.synthetic_data(true_w,true_b,1000)
#使用框架现有的API读取数据
def load_array(data_arrays,batch_size,is_train=True):dataset=data.TensorDataset(*data_arrays)return data.DataLoader(dataset,batch_size,shuffle=is_train)
batch_size=10
data_iter=load_array((features,labels),batch_size)
print(next(iter(data_iter)))
# 模型的定义
#使用框架预定义好的层
net=nn.Sequential(nn.Linear(2,1))
# 初始化模型参数
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)
loss=nn.MSELoss()
trainer=torch.optim.SGD(net.parameters(),lr=0.03)
#训练
num_epochs=3
for epoch in range(num_epochs):for X,y in data_iter:l=loss(net(X),y)trainer.zero_grad()l.backward()trainer.step()l=loss(net(features),labels)print(f'epoch{epoch+1},loss{l:f}')
相关文章:
 
【代码pycharm】动手学深度学习v2-08 线性回归 + 基础优化算法
课程链接 线性回归的从零开始实现 import random import torch from d2l import torch as d2l# 人造数据集 def synthetic_data(w,b,num_examples):Xtorch.normal(0,1,(num_examples,len(w)))ytorch.matmul(X,w)bytorch.normal(0,0.01,y.shape) # 加入噪声return X,y.reshape…...
 
李宏毅机器学习课程知识点摘要(1-5集)
前5集 过拟合: 参数太多,导致把数据集刻画的太完整。而一旦测试集和数据集的关联不大,那么预测效果还不如模糊一点的模型 所以找的数据集的量以及准确性也会影响 由于线性函数的拟合一般般,所以用一组函数去分段来拟合 sigmoi…...
 
React(五)——useContecxt/Reducer/useCallback/useRef/React.memo/useMemo
文章目录 项目地址十六、useContecxt十七、useReducer十八、React.memo以及产生的问题18.1组件嵌套的渲染规律18.2 React.memo18.3 引出问题 十九、useCallback和useMemo19.1 useCallback对函数进行缓存19.2 useMemo19.2.1 基本的使用19.2.2 缓存属性数据 19.2.3 对于更新的理解…...
UE5时间轴节点及其设置
在 Unreal Engine 5 (UE5) 中,时间轴节点 (Timeline) 是一个非常有用的工具,可以在蓝图中实现时间驱动的动画和行为。它允许你在给定的时间范围内执行逐帧的动画或数值变化,广泛应用于动态动画、物体移动、颜色变化、材质变换等场景中。 1. …...
 
git 命令之只提交文件的部分更改
git 命令之只提交文件的部分更改 有时,我们在一个文件中进行了多个更改,但只想提交其中的一部分更改。这时可以使用 使用 git add -p 命令 Git add -p命令允许我们选择并添加文件中的特定更改。它将会显示一个交互式界面,显示出文件中的每个更…...
算法 差分修改 极简
N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a < b),lele便为骑上他的“小飞鸽"牌电动车从气球a开始到气球b依次给每个气球涂一次颜色。但是N次以后lele已经忘记了第I个气球已经涂过几次颜色了,你能帮他算出每个气球被涂过…...
 
pcb元器件选型与焊接测试时的一些个人经验
元件选型 在嘉立创生成bom表,对照bom表买 1、买电容时有50V或者100V是它的耐压值,注意耐压值 2、在买1117等降压芯片时注意它降压后的固定输出,有那种可调降压比如如下,别买错了 贴片元件焊接 我建议先薄薄的在引脚上涂上锡膏…...
 
OSG开发笔记(三十三):同时观察物体不同角度的多视图从相机技术
若该文为原创文章,未经允许不得转载 本文章博客地址:https://blog.csdn.net/qq21497936/article/details/143932273 各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究 长沙红胖子Qt…...
 
模糊逻辑学习 | 模糊推理 | 模糊逻辑控制
注:本文为几位功夫博主关于 “模糊逻辑学习 / 推理 / 控制” 的相关几篇文章合辑。 初学模糊逻辑控制(Fuzzy Logic Control) ziqian__ 已于 2022-08-19 20:30:25 修改 一、前言 模糊逻辑控制(Fuzzy Logic Control)是…...
 
【JavaEE】Servlet:表白墙
文章目录 一、前端二、前置知识三、代码1、后端2、前端3、总结 四、存入数据库1、引入 mysql 的依赖,mysql 驱动包2、创建数据库数据表3、调整上述后端代码3.1 封装数据库操作,和数据库建立连接3.2 调整后端代码 一、前端 <!DOCTYPE html> <ht…...
C++特殊类设计(不能被拷贝的类、只能在堆上创建对象的类、不能被继承的类、单例模式)
C特殊类设计 在实际应用中,可能需要设计一些特殊的类对象,如不能被拷贝的类、只能在堆上创建对象的类、只能在栈上创建对象的类、不能被继承的类、只能创建一个对象的类(单例模式)。 1. 不能被拷贝的类 拷贝只会发生在两个场景…...
 
【小白学机器学习34】用python进行基础的数据统计 mean,var,std,median,mode ,四分位数等
目录 1 用 numpy 快速求数组的各种统计量:mean, var, std 1.1 数据准备 1.2 直接用np的公式求解 1.3 注意问题 1.4 用print() 输出内容,显示效果 2 为了验证公式的后背,下面是详细的展开公式的求法 2.1 均值mean的详细 2.2 方差var的…...
安装 Docker(使用国内源)
一、安装Docker-ce 1、下载阿里云的repo源 [rootlocalhost ~]# yum install yum-utils -y && yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo && yum makecache # 尝试列出 docker-ce 的版本 [rootlocalh…...
 
Ajax学习笔记,第一节:语法基础
Ajax学习笔记,第一节:语法基础 一、概念 1、什么是Ajax 使用浏览器的 XMLHttpRequest 对象 与服务器通信2、什么是axios Axios是一个基于Promise的JavaScript库,支持在浏览器和Node.js环境中使用。相较于Ajax,Axios提供了更多…...
 
《用Python画蔡徐坤:艺术与编程的结合》
简介 大家好!今天带来一篇有趣的Python编程项目,用代码画出知名偶像蔡徐坤的形象。这个项目使用了Python的turtle库,通过简单的几何图形和精心设计的代码来展示艺术与编程的结合。 以下是完整的代码和效果介绍,快来试试看吧&…...
 
Unity中动态生成贴图并保存成png图片实现
实现原理: 要生成长x宽y的贴图,就是生成x*y个像素填充到贴图中,如下图: 如果要改变局部颜色,就是从x1到x2(x1<x2),y1到y2(y1<y2)这个范围做处理, 或者要想做圆形就是计算距某个点(x1,y1&…...
 
Mac配置maven环境及在IDEA中配置Maven
Mac配置maven环境及在IDEA中配置Maven 1. 介绍 Maven是一款广泛用于Java等JVM语言项目的工具,它以项目对象模型(POM)为基础进行项目管理,通过POM文件来定义项目信息和依赖关系。同时,它也是构建自动化工具࿰…...
 
Reactor 模式的理论与实践
1. 引言 1.1 什么是 Reactor 模式? Reactor 模式是一种用于处理高性能 I/O 的设计模式,专注于通过非阻塞 I/O 和事件驱动机制实现高并发性能。它的核心思想是将 I/O 操作的事件分离出来,通过事件分发器(Reactor)将事…...
vim 一次注释多行 的几种方法
在 Vim 中一次注释多行是一个常见操作。可以使用以下方法根据你的具体需求选择合适的方式: 方法 1:手动插入注释符 进入正常模式: 按 Esc 确保进入正常模式。 选择需要注释的多行: 移动到第一行,按下 Ctrlv 进入可视块…...
 
问题记录-Java后端
问题记录 目录 问题记录1.多数据源使用事务注意事项?2.mybatis执行MySQL的存储过程?3.springBoot加载不到nacos配置中心的配置问题4.服务器产生大量close_wait情况 1.多数据源使用事务注意事项? 问题:在springBoot项目中多表处理数…...
 
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
 
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
 
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
 
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
 
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
 
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
