价格分类(神经网络)
# 1.导入依赖包
import timeimport torch
import torch.nn as nn
import torch.optim as optimfrom torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_splitimport numpy as np
import pandas as pd
import matplotlib.pyplot as pltfrom torchsummary import summary# 2.构建数据集
def create_dataset():# 2.1 读取数据集data = pd.read_csv('dataset/手机价格预测.csv')# 2.2 获取特征值和目标值,类型转化 特征(Float) 标签(Long)x, y = data.iloc[:, :-1], data.iloc[:, -1]x, y = x.astype(np.float32), y.astype(np.int64)# 2.3 数据集划分x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,random_state=2)# 2.4 数据转Tensortrain_dataset = TensorDataset(torch.from_numpy(x_train.values), torch.tensor(y_train.values))test_dataset = TensorDataset(torch.from_numpy(x_test.values), torch.tensor(y_test.values))return train_dataset, test_dataset, x_train.shape[1], len(np.unique(y))# 3. 构建模型
class PhonePriceModel(nn.Module):def __init__(self, input_dim, output_dim):super(PhonePriceModel, self).__init__()self.linear1 = nn.Linear(input_dim, 256)self.linear2 = nn.Linear(256, 1024)self.fc = nn.Linear(1024, output_dim)def forward(self, x):x = torch.relu(self.linear1(x))x = torch.relu(self.linear2(x))output = self.fc(x)# output = torch.softmax(self.fc(x), dim=-1)return output# 4.模型训练(225)
def train(model, train_dataset, num_epochs, batch_size):# 2 初始化参数 损失函数 优化器loss1 = nn.CrossEntropyLoss()# optimizer = optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)optimizer = optim.Adam(model.parameters(), lr=1e-4, betas=(0.99, 0.99))start = time.time()# 2 2个遍历 epoch dataloaderfor epoch in range(num_epochs):dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)total_num = 0total_loss = 0.0for x, y in dataloader:# 5 前向传播 损失计算 梯度归零 反向传播 参数更新output = model(x)loss = loss1(output, y)optimizer.zero_grad()loss.backward()optimizer.step()total_num += 1 # 批次total_loss += loss.item()epoch += 1print(f'epoch:{epoch + 1:4d},loss:{total_loss / (total_num * epoch):.4f}, time:{time.time() - start:.2f}s')# 模型持久化torch.save(model.state_dict(), 'model/phone2.pth')# 5.模型预测评估
def test(model, test_dataset, input_dim, output_dim):# 3.导入数据dataloader = DataLoader(test_dataset, batch_size=8, shuffle=False)correct = 0# 4.遍历数据for x, y in dataloader:# 4.1 前向传播output = model(x)print(output)# 4.2 获取输出结果(类别)y_pred = torch.argmax(output, dim=1)# print(y_pred) # 预测错误# 4.3 计算准确率Acccorrect += (y_pred == y).sum()print(correct.item())Acc = correct.item() / len(test_dataset)return Accif __name__ == '__main__':train_dataset, test_dataset, feature_num, label_num = create_dataset()# 1.实例化模型model = PhonePriceModel(feature_num, label_num)# 2.加载模型model.load_state_dict(torch.load('model/phone2.pth'))# 模型训练# train(model, train_dataset, num_epochs=50, batch_size=8)# 模型预测Acc = test(model, test_dataset, feature_num, label_num)print(f'Acc:{Acc:.5f}')
相关文章:
价格分类(神经网络)
# 1.导入依赖包 import timeimport torch import torch.nn as nn import torch.optim as optimfrom torch.utils.data import TensorDataset, DataLoader from sklearn.model_selection import train_test_splitimport numpy as np import pandas as pd import matplotlib.pypl…...
对智能电视直播App的恶意监控
首先我们要指出中国广电总局推出的一个政策性文件是恶意监控的始作俑者,这个广电总局的政策性文件禁止智能电视和电视盒子安装直播软件。应该说这个政策性文件是为了保护特殊利益集团,阻挠技术进步和发展的。 有那么一些电视机和电视盒子的厂商和电信运…...
【JavaEE初阶】多线程初阶下部
文章目录 前言一、volatile关键字volatile 能保证内存可见性 二、wait 和 notify2.1 wait()方法2.2 notify()方法2.3 notifyAll()方法2.4 wait 和 sleep 的对比(面试题) 三、多线程案例单例模式 四、总结-保证线程安全的思路五、对比线程和进程总结 前言…...
macOS上进行Ant Design Pro实战教程(一)
由于一个AI项目的前端使用了umi,本教程根据阿里官网上的 《Ant Design 实战教程(beta 版)》来实操一下,我使用macOS操作系统,VS Code 开发环境。 一、开发环境 1、安装nodejs, npm, yarn 官网上建议使用cnpm…...
智能合约运行原理
点个关注吧!! 用一句话来总结,智能合约就像是一个自动售货机:你投入硬币(触发条件),选择商品(执行合约),然后机器就会自动给你商品(执行结果&…...
安卓动态添加View
在安卓应用中,有很多时候需要动态添加View。比如从后台获取商品列表,根据商品数量在页面渲染对应数量的条目,这时候就需要动态添加View。 1.动态添加View的方法 动态添加View有两种方法: 由代码生成子View:这种方式…...
前端预览pdf文件流
需求 后端接口返回pdf文件流,实现新窗口预览pdf。 解决方案 把后端返回的pdf文件流转为blob路径,利用浏览器直接预览。 具体实现步骤 1、引入axios import axios from axios;2、创建预览方法(具体使用时将axios的请求路径替换为你的后端…...
【测试工具JMeter篇】JMeter性能测试入门级教程(一)出炉,测试君请各位收藏了!!!
一、前言 Apache JMeter是纯Java的开源软件,最初由Apache软件基金会的Stefano Mazzocchi开发,旨在加载测试功能行为和测量性能。可以使用JMeter进行性能测试,即针对重负载、多用户和并发流量测试Web应用程序。 我们选择JMeter原因 是否测试过…...
【zookeeper03】消息队列与微服务之zookeeper集群部署
ZooKeeper 集群部署 1.ZooKeeper 集群介绍 ZooKeeper集群用于解决单点和单机性能及数据高可用等问题。 集群结构 Zookeeper集群基于Master/Slave的模型 处于主要地位负责处理写操作)的主机称为Leader节点,处于次要地位主要负责处理读操作的主机称为 follower 节点…...
从 Llama 1 到 3.1:Llama 模型架构演进详解
编者按: 面对 Llama 模型家族的持续更新,您是否想要了解它们之间的关键区别和实际性能表现?本文将探讨 Llama 系列模型的架构演变,梳理了 Llama 模型从 1.0 到 3.1 的完整演进历程,深入剖析了每个版本的技术创新&#…...
UE5肉鸽游戏教程学习
学习地址推荐:UE5肉鸽项目实战教程_哔哩哔哩_bilibili...
Vue3 - 详细实现虚拟列表前端虚拟滚动列表解决方案,vue3长列表优化之虚拟列表,解决列表动态高度不固定高度及图片视频图文异步请求加载问题,虚拟列表DOM大量数据同时加载渲染卡顿太慢及下滑列表闪烁
前言 Vue2 版本,请访问 这篇文章 在 vue3 项目开发中,详解实现虚拟列表高度不固定(不定高)且复杂含有图片视频等复杂虚拟列表教程,决列表每项高度不确定及img图像或视频的加载方案,利用缓冲区技术解决用户浏览时渲染不及时列表闪烁白屏/列表加载闪屏,解vue3实现虚拟列表优…...
英语知识网站开发:Spring Boot框架技巧
摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了英语知识应用网站的开发全过程。通过分析英语知识应用网站管理的不足,创建了一个计算机管理英语知识应用网站的方案。文章介绍了英语知识应用网站的系…...
基于lvgl+ST7735制作一款esp8285的控制面板程序
要在ESP8285上使用LVGL和ST7735创建一个控制面板程序,你需要遵循以下步骤。这个过程包括设置开发环境,连接硬件,编写代码,以及调校和优化。 所需硬件 ESP8285 开发板:像NodeMCU之类的开发板。ST7735 显示屏:通常是1.8英寸或2.0英寸的SPI接口显示屏。电源和连接线:用于连…...
MySQL 索引详解
在数据库的世界中,索引就像是一本巨大书籍的目录,它能够极大地提高数据检索的效率。在 MySQL 中,索引的合理使用对于数据库的性能至关重要。本文将深入探讨 MySQL 索引的各个方面。 一、索引的概念与作用 1. 什么是索引? 索引是一…...
区块链学习笔记(1)--区块、链和共识 区块链技术入门
常见的hash算法: 文件防篡改:MD5比特币挖矿:SHA256证明数据片段:Merkle root文本去重:SimHash 区块 区块(block)由区块头(block header)和交易列表(transac…...
【Android+多线程】IntentService 知识总结:应用场景 / 使用步骤 / 源码分析
定义 IntentService 是 Android中的一个封装类,继承自四大组件之一的Service 功能 处理异步请求 & 实现多线程 应用场景 线程任务 需 按顺序、在后台执行 最常见的场景:离线下载不符合多个数据同时请求的场景:所有的任务都在同一个T…...
Python Tornado框架教程:高性能Web框架的全面解析
Python Tornado框架教程:高性能Web框架的全面解析 引言 在现代Web开发中,选择合适的框架至关重要。Python的Tornado框架因其高性能和非阻塞I/O特性而备受青睐。它特别适合处理大量并发连接的应用,比如聊天应用、实时数据处理和WebSocket服务…...
通过端口测试验证网络安全策略
基于网络安全需求,项目中的主机间可能会有不同的网络安全策略,这当然是好的,但很多时候,在解决网络安全问题的时候,同时引入了新的问题,如k8s集群必须在主机间开放udp端口,否则集群不能正常的运…...
Excel把其中一张工作表导出成一个新的文件
excel导出一张工作表 一个Excel表里有多个工作表,怎么才能导出一个工作表,让其生成新的Excel文件呢? 第一步:首先打开Excel表格,然后选择要导出的工作表的名字,比如“Sheet1”,把鼠标放到“She…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
