flink学习(8)——窗口函数
增量聚合函数
——指窗口每进入一条数据就计算一次
例如:要计算数字之和,进去一个12 计算结果为20, 再进入一个7 ——结果为27
reduce
aggregate(aggregateFunction)
package com.bigdata.day04;public class _04_agg函数 {public static final Tuple3[] ENGLISH = new Tuple3[] {Tuple3.of("class1", "张三", 100L),Tuple3.of("class1", "李四", 40L),Tuple3.of("class1", "王五", 60L),Tuple3.of("class2", "赵六", 20L),Tuple3.of("class2", "小七", 30L),Tuple3.of("class2", "小八", 50L),};public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据DataStreamSource<Tuple3<String,String,Long>> dataStreamSource = env.fromElements(ENGLISH);// 此时我要获取每个班级的平均成绩// 输入数据的类型(IN)、累加器的类型(ACC)和输出数据的类型(OUT)// IN——Tuple3<String, String, Long>// ACC——Tuple3<String, Integer,Long> 第一个是班级(key)第二个是数量,第三个是总的成绩// OUT —— Tuple2<String,Double> 第一个是班级 第二个是平均成绩dataStreamSource.countWindowAll(3).aggregate(new AggregateFunction<Tuple3<String, String, Long>, Tuple3<String, Integer,Long>, Tuple2<String,Double>>() {// 初始化一个 累加器@Overridepublic Tuple3<String, Integer, Long> createAccumulator() {return Tuple3.of(null,0,0L);}// 累加器和输入的值进行累加// Tuple3<String, String, Long> value 第一个是传入的值// Tuple3<String, Integer, Long> accumulator 第二个是累加器的值@Overridepublic Tuple3<String, Integer, Long> add(Tuple3<String, String, Long> value, Tuple3<String, Integer, Long> accumulator) {return Tuple3.of(value.f0,accumulator.f1+1,accumulator.f2+value.f2);}// 获取结果——在不同节点的结果进行汇总后实现@Overridepublic Tuple2<String, Double> getResult(Tuple3<String, Integer, Long> accumulator) {return Tuple2.of(accumulator.f0, (double) accumulator.f2 / accumulator.f1);}// 由于flink是分布式,所以在别的节点也会进行累加 ,该方法是不同节点的结果进行汇总// 即累加器之间的累加@Overridepublic Tuple3<String, Integer, Long> merge(Tuple3<String, Integer, Long> a, Tuple3<String, Integer, Long> b) {return Tuple3.of(a.f0,a.f1+b.f1,a.f2+b.f2);}}).print();//4. sink-数据输出//5. execute-执行env.execute();}
}
sum()
min()
max()
全量聚合函数
指在窗口触发的时候才会对窗口内的所有数据进行一次计算(等窗口的数据到齐,才开始进行聚合计算,可实现对窗口内的数据进行排序等需求)
全量聚合函数比较简单,但是会将所有的数据存放在内存中,因此会占用大量的内存空间
apply
package com.bigdata.day04;public class _05_app函数 {public static final Tuple3[] ENGLISH = new Tuple3[] {Tuple3.of("class1", "张三", 100L),Tuple3.of("class1", "李四", 40L),Tuple3.of("class1", "王五", 60L),Tuple3.of("class2", "赵六", 20L),Tuple3.of("class2", "小七", 30L),Tuple3.of("class2", "小八", 50L),};public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);DataStreamSource<Tuple3<String,String,Long>> dataStreamSource = env.fromElements(ENGLISH);//2. source-加载数据dataStreamSource.countWindowAll(3).apply(new AllWindowFunction<Tuple3<String,String,Long>, Tuple2<String,Double>, GlobalWindow>() {@Overridepublic void apply(GlobalWindow window, Iterable<Tuple3<String, String, Long>> values, Collector<Tuple2<String,Double>> out) throws Exception {Long sum = 0L;int length = 0;String key = null;for (Tuple3<String, String, Long> value : values) {sum += value.f2;length++;key = value.f0;}out.collect(Tuple2.of(key,(double) sum/length));}}).print();env.execute();}
}// 总结// 接口
new AllWindowFunction<Tuple3<String,String,Long>, Tuple2<String,Double>, GlobalWindow>()
GlobalWindow 窗口对象 Tuple3<String,String,Long> 传入的值 Tuple2<String,Double> 结果// 重写的方法
public void apply(GlobalWindow window, Iterable<Tuple3<String, String, Long>> values, Collector<Tuple2<String,Double>> out) Iterable<Tuple3<String, String, Long>> values 传入值的迭代器 进行遍历
Collector<Tuple2<String,Double>> out 收集器 调用collect方法收集即可
window 窗口对象//使用窗口对象我们可以拿到窗口的起始时间long start = window.getStart();long end = window.getEnd();
process
使用方式一:在connect合流之后对两个类型不同的流进行处理
使用方式二:在分流的时候使用,可以通过context.output方法对每个数据添加一个标签
使用方式一
new CoProcessFunction<Long, String, String>()
// 第一个泛型是第一个流的类型 第二个泛型是第二个流的类型 第三个泛型是合并后流的类型@Overridepublic void processElement1(Long l, CoProcessFunction<Long, String, String>.Context context, Collector<String> collector) throws Exception {// Long 是数据类型 结果使用collector中的collect 收集collector.collect(String.valueOf(l));}@Overridepublic void processElement2(String s, CoProcessFunction<Long, String, String>.Context context, Collector<String> collector) throws Exception {// String 是数据类型 结果使用collector中的collect 收集collector.collect(s);}
使用方式二
此时使用的是context中的context.output(odd, element); 方法
odd 是标签
element 是元素OutputTag<Long> odd = new OutputTag<>("奇数",TypeInformation.of(Long.class));
OutputTag<Long> even = new OutputTag<>("偶数", TypeInformation.of(Long.class));
相关文章:
flink学习(8)——窗口函数
增量聚合函数 ——指窗口每进入一条数据就计算一次 例如:要计算数字之和,进去一个12 计算结果为20, 再进入一个7 ——结果为27 reduce aggregate(aggregateFunction) package com.bigdata.day04;public class _04_agg函数 {public static …...
「实战应用」如何用图表控件LightningChart .NET实现散点图?(一)
LightningChart .NET完全由GPU加速,并且性能经过优化,可用于实时显示海量数据-超过10亿个数据点。 LightningChart包括广泛的2D,高级3D,Polar,Smith,3D饼/甜甜圈,地理地图和GIS图表以及适用于科…...
鸿蒙Native使用Demo
DevecoStudio使用Native 今天,给大家带来的是关于DevecoStudio中使用Native进行开发 个人拙见:为什么要使用Native?无论是JS还是TS在复杂的情况下运行速度,肯定不如直接操作内存的C/C的运行速度快,所以,会选择使用Native;这里面的过程是什么?通过映射转化,使用napi提供的接口…...
29.UE5蓝图的网络通讯,多人自定义事件,变量同步
3-9 蓝图的网络通讯、多人自定义事件、变量同步_哔哩哔哩_bilibili 目录 1.网络通讯 1.1玩家Pawn之间的同步 1.2事件同步 1.3UI同步 1.4组播 1.5变量同步 1.网络通讯 1.1玩家Pawn之间的同步 创建一个第三人称项目 将网络模式更改为监听服务器,即将房主作为…...
Scala—列表(可变ListBuffer、不可变List)用法详解
Scala集合概述-链接 大家可以点击上方链接,先对Scala的集合有一个整体的概念🤣🤣🤣 在 Scala 中,列表(List)分为不可变列表(List)和可变列表(ListBuffer&…...
【论文复现】偏标记学习+图像分类
📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀ 偏标记学习图像分类 概述算法原理核心逻辑效果演示使用方式参考文献 概述 本文复现论文 Progressive Identification of True Labels for Pa…...
C嘎嘎探索篇:栈与队列的交响:C++中的结构艺术
C嘎嘎探索篇:栈与队列的交响:C中的结构艺术 前言: 小编在之前刚完成了C中栈和队列(stack和queue)的讲解,忘记的小伙伴可以去我上一篇文章看一眼的,今天小编将会带领大家吹奏栈和队列的交响&am…...
AIGC-----AIGC在虚拟现实中的应用前景
AIGC在虚拟现实中的应用前景 引言 随着人工智能生成内容(AIGC)的快速发展,虚拟现实(VR)技术的应用也迎来了新的契机。AIGC与VR的结合为创造沉浸式体验带来了全新的可能性,这种组合不仅极大地降低了VR内容的…...
Django 路由层
1. 路由基础概念 URLconf (URL 配置):Django 的路由系统是基于 urls.py 文件定义的。路径匹配:通过模式匹配 URL,并将请求传递给对应的视图处理函数。命名路由:每个路由可以定义一个名称,用于反向解析。 2. 基本路由配…...
《硬件架构的艺术》笔记(八):消抖技术
简介 在电子设备中两个金属触点随着触点的断开闭合便产生了多个信号,这就是抖动。 消抖是用来确保每一次断开或闭合触点时只有一个信号起作用的硬件设备或软件。(就是每次断开闭合只对应一个操作)。 抖动在某些模拟和逻辑电路中可能产生问…...
Spring 与 Spring MVC 与 Spring Boot三者之间的区别与联系
一.什么是Spring?它解决了什么问题? 1.1什么是Spring? Spring,一般指代的是Spring Framework 它是一个开源的应用程序框架,提供了一个简易的开发方式,通过这种开发方式,将避免那些可能致使代码…...
【算法】连通块问题(C/C++)
目录 连通块问题 解决思路 步骤: 初始化: DFS函数: 复杂度分析 代码实现(C) 题目链接:2060. 奶牛选美 - AcWing题库 解题思路: AC代码: 题目链接:687. 扫雷 -…...
如何选择黑白相机和彩色相机
我们在选择成像解决方案时黑白相机很容易被忽略,因为许多新相机提供鲜艳的颜色,鲜明的对比度和改进的弱光性能。然而,有许多应用,选择黑白相机将是更好的选择,因为他们产生更清晰的图像,更好的分辨率&#…...
Rust 力扣 - 740. 删除并获得点数
文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 首先对于这题我们如果将所有点数装入一个切片f中,该切片f中的i号下标表示所有点数为i的点数之和 那么这题就转换成了打家劫舍这道题,也就是求选择了切片中某个下标的元素后,该…...
OpenCV从入门到精通实战(七)——探索图像处理:自定义滤波与OpenCV卷积核
本文主要介绍如何使用Python和OpenCV库通过卷积操作来应用不同的图像滤波效果。主要分为几个步骤:图像的读取与处理、自定义卷积函数的实现、不同卷积核的应用,以及结果的展示。 卷积 在图像处理中,卷积是一种重要的操作,它通过…...
Docker核心概念总结
本文只是对 Docker 的概念做了较为详细的介绍,并不涉及一些像 Docker 环境的安装以及 Docker 的一些常见操作和命令。 容器介绍 Docker 是世界领先的软件容器平台,所以想要搞懂 Docker 的概念我们必须先从容器开始说起。 什么是容器? 先来看看容器较为…...
环形缓冲区
什么是环形缓冲区 环形缓冲区,也称为循环缓冲区或环形队列,是一种特殊的FIFO(先进先出)数据结构。它使用一块固定大小的内存空间来缓存数据,并通过两个指针(读指针和写指针)来管理数据的读写。当任意一个指针到达缓冲区末尾时,会自动回绕到缓冲区开头,形成一个"环"。…...
jQuery-Word-Export 使用记录及完整修正文件下载 jquery.wordexport.js
参考资料: jQuery-Word-Export导出word_jquery.wordexport.js下载-CSDN博客 近期又需要自己做个 Html2Doc 的解决方案,因为客户又不想要 Html2pdf 的下载了,当初还给我费尽心思解决Html转pdf时中文输出的问题(html转pdf文件下载之…...
云服务器部署WebSocket项目
WebSocket是一种在单个TCP连接上进行全双工通信的协议,其设计的目的是在Web浏览器和Web服务器之间进行实时通信(实时Web) WebSocket协议的优点包括: 1. 更高效的网络利用率:与HTTP相比,WebSocket的握手只…...
C#+数据库 实现动态权限设置
将权限信息存储在数据库中,支持动态调整。根据用户所属的角色、特定的功能模块,动态加载权限” 1. 数据库设计 根据这种需求,可以通过以下表设计: 用户表 (Users):存储用户信息。角色表 (Roles):存储角色…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
flow_controllers
关键点: 流控制器类型: 同步(Sync):发布操作会阻塞,直到数据被确认发送。异步(Async):发布操作非阻塞,数据发送由后台线程处理。纯同步(PureSync…...
