当前位置: 首页 > news >正文

Wonder3D本地部署到算家云搭建详细教程

Wonder3D简介

Wonder3D仅需2至3分钟即可从单视图图像中重建出高度详细的纹理网格。Wonder3D首先通过跨域扩散模型生成一致的多视图法线图与相应的彩色图像,然后利用一种新颖的法线融合方法实现快速且高质量的重建。

本文详细介绍了在算家云搭建Wonder3D的流程以及本地部署的教程,希望能帮助到大家,有问题可以随时联系我们~

 平台搭建流程

系统:Ubuntu22.04系统,显卡:3090,显存:24G

1.选择模型实例

在算家云“应用社区”中搜索或找到“Wonder3D”模型

或者在“3D模型生成”选项功能中单击选择“三维重建”

微信截图_20240913114101.png

2.创建模型实例

在Wonder3D模型界面页面中单击“创建应用”

微信截图_20240913114207.png

选择GPU资源项选择RTX 3090后单击”立即创建“

微信截图_20240913114305.png

3.使用模型

单击webSSH进入终端:

3090进入终端.jpg

使用下列命令运行项目

conda activate wonder3d
cd Wonder3D
export GRADIO_SERVER_NAME=0.0.0.0
export GRADIO_SERVER_PORT=8080
python gradio_app_recon.py

微信截图_20240910112619.png

返回项目实例页面点击开放端口

开放端口.jpg

打开一个新的网页,将得到的网址进行粘贴,模型界面成功打开

微信截图_20240910111920.png

 具体使用方法请在应用社区查看此模型主页的“使用说明”

以上就是Wonder3D在算家云搭建的流程,下面将介绍本地部署教程,有需要的可以参考。

本地部署流程

一、基础环境

1.查看系统是否有Miniconda3的虚拟环境

conda -V
如果输入命令没有显示Conda版本号,则需要安装。

安装教程可查看:

屏幕截图

2.更新系统命令

输入下列命令将系统更新及系统缺失命令下载

apt-get update 
apt-get upgrade 
apt-get install -y vim wget unzip lsof net-tools openssh-server git git-lfs gcc cmake build-essential

3.创建虚拟Python环境

  • 创建一个名为"wonder3d"的虚拟镜像,python版本为3.8

conda create -n wonder3d python=3.8

微信截图_20240909142429.png

  • 进入"wonder3d"虚拟环境

conda activate wonder3d

微信截图_20240909142455.png

4.下载模型

输入下列命令对Wonder3D模型进行下载

git clone https://gitclone.com/github.com/xxlong0/Wonder3D.git
cd Wonder3D

微信截图_20240909142649.png

5.下载模型依赖包

输入下列命令:

pip install -r requirements.txt  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

微信截图_20240909142953.png

耐心等待直到”Successfully“出现

微信截图_20240909143609.png

7.添加模型文件

自选。如果您在连接到 huggingface 时遇到问题。确保您已下载以下模型。 下载 checkpoint 并进入根文件夹

如果您在中国大陆,您可以通过 aliyun 下载。

Wonder3D
|-- ckpts
|-- unet
|-- scheduler
|-- vae
...
然后修改文件 ./configs/mvdiffusion-joint-ortho-6views.yaml。

设置pretrained_model_name_or_path="./ckpts"

下载 SAM 模型。将其放入文件夹。sam_pt
Wonder3D
|-- sam_pt
|-- sam_vit_h_4b8939.pth

二、界面展示

输入下列命令启动界面:

python gradio_app_recon.py

微信截图_20240910112619.png

复制网址打开页面

微信截图_20240910111920.png

算家云——简单、高效、便宜

点击算家云-应用社区,进入算家云,选择模型,一键开启AI之旅!

相关文章:

Wonder3D本地部署到算家云搭建详细教程

Wonder3D简介 Wonder3D仅需2至3分钟即可从单视图图像中重建出高度详细的纹理网格。Wonder3D首先通过跨域扩散模型生成一致的多视图法线图与相应的彩色图像,然后利用一种新颖的法线融合方法实现快速且高质量的重建。 本文详细介绍了在算家云搭建Wonder3D的流程以及…...

【设计模式】【行为型模式(Behavioral Patterns)】之状态模式(State Pattern)

1. 设计模式原理说明 状态模式(State Pattern) 是一种行为设计模式,它允许对象在其内部状态发生变化时改变其行为。这个模式的核心思想是使用不同的类来表示不同的状态,每个状态类都封装了与该状态相关的特定行为。当对象的状态发…...

QML学习 —— 34、视频媒体播放器(附源码)

效果 说明 您可以单独使用MediaPlayer播放音频内容(如音频),也可以将其与VideoOutput结合使用以渲染视频。VideoOutput项支持未转换、拉伸和均匀缩放的视频演示。有关拉伸均匀缩放演示文稿的描述,请参见fillMode属性描述。 播放可能出错问题 出现的问题:      DirectS…...

【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分!

【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分! 【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神…...

【Qt】控件7

1.QTextEdit的简单使用 使用简单的QTextEdit,获取到的内容显示到标签上 使用textChanged信号 在槽函数中需要获取QTextEdit的内容,对应操作是: QString curorui->textEdit->toPlainText();然后显示到标签上,对应操作是: …...

F12抓包14_修改网页图片网页保存到本地

课程大纲 1、修改网页图片&#xff08;2种方式二选一&#xff09; 修改网页图片&#xff0c;需要定位到图片标签&#xff0c;修改<img>标签的属性。2种方法&#xff1a; 1. 修改为网络图片url。缺点&#xff1a;url失效&#xff0c;图片无法显示。 2. 修改为图片base64&a…...

源代码检测,内附实际案例

源代码安全审计是依据国标GB/T 34944-2017、GB/T 34944-2017&#xff0c;结合专业源代码扫描工具对各种程序语言编写的源代码进行安全审计。能够为客户提供包括安全编码规范咨询、源代码安全现状评测、定位源代码中存在的安全漏洞、分析漏洞风险、给出修改建议等一系列服务。 源…...

1138:将字符串中的小写字母转换成大写字母

【题目描述】 给定一个字符串&#xff0c;将其中所有的小写字母转换成大写字母。 【输入】 输入一行&#xff0c;包含一个字符串&#xff08;长度不超过100&#xff0c;可能包含空格&#xff09;。 【输出】 输出转换后的字符串。 【输入样例】 helloworld123Ha 【输出样例】…...

《C++ 人工智能模型邂逅云平台:集成之路的策略与要点全解析》

在当今数字化浪潮汹涌澎湃的时代&#xff0c;人工智能无疑是引领技术变革的核心力量。而 C以其卓越的性能和高效的资源利用&#xff0c;成为开发人工智能模型的有力武器。与此同时&#xff0c;云平台所提供的强大计算能力、灵活的存储资源以及便捷的服务部署&#xff0c;为人工…...

【ArcGISPro】Sentinel-2数据处理

错误 默认拉进去只组织了4个波段,但是实际有12个波段 解决方案 数据下载 Sentinel-2 数据下载-CSDN博客 数据处理 数据查看 创建镶嵌数据集 在数据管理工具箱中找到创建镶嵌数据集...

Unity中的简易TCP服务器/客户端

在本文中&#xff0c;我将向你介绍一个在Unity中实现的简单TCP服务器脚本,和一个简单的客户端脚本. 脚本 MyTcpServer 允许Unity应用创建一个TCP服务器&#xff0c;监听客户端的连接、异步处理客户端消息&#xff0c;并通过事件与Unity应用中的其他模块进行通信。 MyTcpServe…...

Spring Boot 3.4 正式发布,结构化日志!

1 从 Spring Boot 3.3 升级到 3.4 1.1 RestClient 和 RestTemplate 新增对 RestClient 和 RestTemplate 自动配置的支持&#xff0c;可用 Reactor Netty 的 HttpClient 或 JDK 的 HttpClient。支持的客户端优先级&#xff1a; Apache HTTP Components (HttpComponentsClient…...

技术文档,they are my collection!

工作 今天这篇文章&#xff0c;献给一直撰写技术文档的自己。我自认为是公司中最爱写文档的人了&#xff0c;我们是一个不到40人的小公司&#xff0c;公司作风没有多么严谨&#xff0c;领导也不会要求我们写技术文档。但是从入职初至今&#xff0c;我一直保持着写技术文档…...

详解Qt之QtMath Qt数学类

文章目录 QtMath详解前言QtMath简介QtMath中的函数1. 三角函数1.1 qSin1.2 qCos 2. 指数与对数函数2.1 qExp2.2 qLn 3. 幂运算与平方根3.1 qPow3.2 qSqrt QtMath的优势1. 一致性与跨平台支持2. 与Qt生态系统集成3. 简洁性 总结 QtMath详解 前言 在C的开发中&#xff0c;数学运…...

人工智能与人类:共创未来的新篇章

数年前&#xff0c;当人工智能还停留在实验室的时候&#xff0c;很少有人能想到它会如此迅速地融入我们的日常生活。如今&#xff0c;从手机上的语音助手&#xff0c;到自动驾驶汽车&#xff0c;从智能家居到医疗诊断&#xff0c;AI的身影无处不在。这让我想起了20世纪初电力普…...

4.6 JMeter HTTP信息头管理器

欢迎大家订阅【软件测试】 专栏&#xff0c;开启你的软件测试学习之旅&#xff01; 文章目录 前言1 HTTP信息头管理器的位置2 常见的HTTP请求头3 添加 HTTP 信息头管理器4 应用场景 前言 在 JMeter 中&#xff0c;HTTP信息头管理器&#xff08;HTTP Header Manager&#xff09…...

非交换几何与黎曼ζ函数:数学中的一场革命性对话

非交换几何与黎曼ζ函数&#xff1a;数学中的一场革命性对话 非交换几何&#xff08;Noncommutative Geometry, NCG&#xff09;是数学的一个分支领域&#xff0c;它将经典的几何概念扩展到非交换代数的框架中。非交换代数是一种结合代数&#xff0c;其中乘积不是交换性的&…...

【设计模式】【行为型模式(Behavioral Patterns)】之观察者模式(Observer Pattern)

1. 设计模式原理说明 观察者模式&#xff08;Observer Pattern&#xff09; 是一种行为设计模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都会得到通知并自动更新。这种模式非常适合处理事件驱动系统&a…...

文件导入-使用java反射修改日期数据

文件导入时&#xff0c;时间类型通常不能直接导出&#xff0c;以下方法为批量处理类中日期类型转字符串类型。 Date/Datetime --> String(yyyy-mm-dd)Field[] declaredFields HrAviationstudentMonitorDTO.class.getDeclaredFields(); for (Field field : declaredFields) …...

【网络安全设备系列】10、安全审计系统

0x00 定义: 网络安全审计系统针对互联网行为提供有效的行为审计、内容审计、行为报警、行为控制及相关审计功能。从管理层面提供互联网的 有效监督&#xff0c;预防、制止数据泄密。满足用户对互联网行为审计备案及 安全保护措施的要求&#xff0c;提供完整的上网记录&#xf…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...