python3 自动更新的缓存类
这个类会在后台自动更新缓存数据,你只需要调用方法来获取数据即可。
自动更新缓存类
以下是 AutoUpdatingCache 类的实现:
import threading
import timeclass AutoUpdatingCache:def __init__(self, update_function, expiry_time=60):"""初始化缓存类。:param update_function: 一个函数,用于生成或更新缓存数据。:param expiry_time: 缓存的更新周期(秒)。"""self.update_function = update_functionself.expiry_time = expiry_timeself.cache_data = Noneself.last_updated = 0self.lock = threading.Lock()self._start_background_update()def _start_background_update(self):# 启动后台线程更新缓存self.update_thread = threading.Thread(target=self._update_cache_periodically)self.update_thread.daemon = Trueself.update_thread.start()def _update_cache_periodically(self):while True:current_time = time.time()if current_time - self.last_updated >= self.expiry_time:self._update_cache()time.sleep(1) # 每秒检查一次def _update_cache(self):with self.lock:try:print("Updating cache...")new_data = self.update_function()self.cache_data = new_dataself.last_updated = time.time()print("Cache updated!")except Exception as e:print(f"Error updating cache: {e}")def get_data(self):with self.lock:if self.cache_data is not None:return self.cache_dataelse:return "Cache is initializing, please try again later."
使用说明
-
定义一个数据生成函数
首先,需要定义一个用于生成或更新缓存数据的函数。这个函数可以是任何耗时的操作,例如从数据库查询、计算复杂结果等。
import timedef generate_cache_data():# 模拟耗时操作time.sleep(5)return {"value": "fresh data", "timestamp": time.time()} -
创建缓存类的实例
将数据生成函数传递给
AutoUpdatingCache类,并设置缓存更新周期。cache = AutoUpdatingCache(update_function=generate_cache_data, expiry_time=30) -
获取缓存数据
在需要的地方调用
get_data()方法即可获取缓存数据。data = cache.get_data() print(data)
完整示例
将以上步骤组合起来:
import threading
import timeclass AutoUpdatingCache:def __init__(self, update_function, expiry_time=60):self.update_function = update_functionself.expiry_time = expiry_timeself.cache_data = Noneself.last_updated = 0self.lock = threading.Lock()self._start_background_update()def _start_background_update(self):self.update_thread = threading.Thread(target=self._update_cache_periodically)self.update_thread.daemon = Trueself.update_thread.start()def _update_cache_periodically(self):while True:current_time = time.time()if current_time - self.last_updated >= self.expiry_time:self._update_cache()time.sleep(1)def _update_cache(self):with self.lock:try:print("Updating cache...")new_data = self.update_function()self.cache_data = new_dataself.last_updated = time.time()print("Cache updated!")except Exception as e:print(f"Error updating cache: {e}")def get_data(self):with self.lock:if self.cache_data is not None:return self.cache_dataelse:return "Cache is initializing, please try again later."# 数据生成函数
def generate_cache_data():time.sleep(5) # 模拟耗时操作return {"value": "fresh data", "timestamp": time.time()}# 创建缓存实例
cache = AutoUpdatingCache(update_function=generate_cache_data, expiry_time=30)# 模拟获取数据
for _ in range(10):data = cache.get_data()print(data)time.sleep(10)
代码解释
-
AutoUpdatingCache 类
- init 方法:
- 初始化缓存,设置数据生成函数和缓存更新周期。
- 启动后台线程
_update_cache_periodically。
- _update_cache_periodically 方法:
- 无限循环,每隔一秒检查缓存是否需要更新。
- 如果当前时间距离上次更新时间超过了
expiry_time,则调用_update_cache。
- _update_cache 方法:
- 使用
update_function更新缓存数据。 - 使用锁机制
threading.Lock确保线程安全。
- 使用
- get_data 方法:
- 获取缓存数据。
- 如果缓存数据为空(初始化中),返回提示信息。
- init 方法:
-
数据生成函数
generate_cache_data函数模拟一个耗时操作,生成新的缓存数据。
-
使用示例
- 创建缓存实例并在循环中每隔 10 秒获取一次数据,观察缓存的更新情况。
注意事项
-
线程安全:
- 使用
threading.Lock确保在多线程环境下数据访问的安全性。
- 使用
-
异常处理:
- 在更新缓存时,捕获可能的异常,防止线程崩溃。
-
后台线程:
- 将线程设置为守护线程(
daemon=True),使得主程序退出时,线程自动结束。
- 将线程设置为守护线程(
应用场景
你可以将这个缓存类应用在 Web 应用程序中,例如在 Sanic 的路由中:
from sanic import Sanic
from sanic.response import jsonapp = Sanic("CacheApp")@app.route("/data")
async def get_cached_data(request):data = cache.get_data()return json({"data": data})if __name__ == "__main__":# 确保缓存在应用启动前初始化cache = AutoUpdatingCache(update_function=generate_cache_data, expiry_time=30)app.run(host="0.0.0.0", port=8000)
这样,用户在访问 /data 路由时,总是能得到缓存中的数据,而缓存会在后台自动更新,不会因为更新缓存而导致请求超时。
😊
相关文章:
python3 自动更新的缓存类
这个类会在后台自动更新缓存数据,你只需要调用方法来获取数据即可。 自动更新缓存类 以下是 AutoUpdatingCache 类的实现: import threading import timeclass AutoUpdatingCache:def __init__(self, update_function, expiry_time60):""&qu…...
英语知识网站开发:Spring Boot框架应用
3系统分析 3.1可行性分析 通过对本英语知识应用网站实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本英语知识应用网站采用SSM框架,JAVA作为开发语…...
文件上传upload-labs-docker通关
(图片加载不出,说明被和谐了) 项目一: sqlsec/ggctf-upload - Docker Image | Docker Hub 学习过程中,可以对照源码进行白盒分析. 补充:环境搭建在Linux虚拟机上的同时,以另一台Windows虚拟机进行测试最…...
git(Linux)
1.git 三板斧 基本准备工作: 把远端仓库拉拉取到本地了 .git --> 本地仓库 git在提交的时候,只会提交变化的部分 就可以在当前目录下新增代码了 test.c 并没有被仓库管理起来 怎么添加? 1.1 git add test.c 也不算完全添加到仓库里面&…...
Doris实战—构建日志存储与分析平台
构建日志存储与分析平台 日志是系统运行的详细记录,包含各种事件发生的主体、时间、位置、内容等关键信息。出于运维可观测、网络安全监控及业务分析等多重需求,企业通常需要将分散的日志采集起来,进行集中存储、查询和分析,以进一步从日志数据里挖掘出有价值的内容。 针…...
【vue3+Typescript】unapp+stompsj模式下替代plus-websocket的封装模块
由于plus-websocket实测存在消息丢失的问题,只能寻找替代的方案,看文章说使用原生的即可很好的工作。而目前在stompjs里需要使用websocket类型的封装模块,看了下原来提供的接口,采用uniapp原生的websocket模式,对原模块…...
Tcon技术和Tconless技术介绍
文章目录 TCON技术(传统时序控制器)定义:主要功能:优点:缺点: TCONless技术(无独立时序控制器)定义:工作原理:优点:缺点: TCON与TCONl…...
C#-利用反射自动绑定请求标志类和具体执行命令类
文章速览 概述例程请求类命名空间父类示例子类示例 命令类命名空间子类示例 记录的数据结构实现绑定方法 坚持记录实属不易,希望友善多金的码友能够随手点一个赞。 共同创建氛围更加良好的开发者社区! 谢谢~ 概述 需求: 将指定的两种类型的…...
高中数学练习:初探均值换元法
文章目录 1. 均值换元法定义2. 均值换元法优点3. 均值换元法应用4. 均值换元法示例4.1 求解分式方程4.2 求解指数方程4.3 计算最大值 5. 实战小结 1. 均值换元法定义 均值换元法是一种数学技巧,通过引入新变量 t t t将两个变量 x x x和 y y y表示为它们的平均值加上…...
数据结构单链表,顺序表,广义表,多重链表,堆栈的学习
单链表 比如一个多项式,主要包括x的系数,x的指数,那么可以创建一个一维数组来存储它的系数和指数,用数组下标来表示。它的系数可以用数组下标对应的数组元素来储存。 可是这样储存会浪费空间所以采用单链表形式来存储。 即创建一…...
【保姆级教程】使用lora微调LLM并在truthfulQA数据集评估(Part 2.在truthfulQA上评估LLM)
上一期我们成功用lora微调了一个模型传送门,怎样评估模型呢?目前LLM没有一个统一的BENCHMARK。我们今天选用truthfulQA。 truthfulQA数据集格式如下所示 {question: What is the smallest country in the world that is at least one square mile in ar…...
thinkphp中对请求封装
请求的封装 //调用 $res Http::post($this->baseUrl . $url,$params,[CURLOPT_HTTPHEADER > [Content-Type: application/json,Content-Length: . strlen($params),],]);<?php namespace fast; /*** 字符串类*/ class Http {/*** 发送一个POST请求*/public static …...
leetcode hot100【LeetCode 215.数组中的第K个最大元素】java实现
LeetCode 215.数组中的第K个最大元素 题目描述 给定一个整数数组 nums 和一个整数 k,请返回数组中第 k 个最大的元素。 请注意,要求排名是从大到小的,因此第 k 个最大元素是排序后的第 k 个元素。你需要设计一个高效的算法来解决这个问题。…...
簡單易懂:如何在Windows系統中修改IP地址?
無論是為了連接到一個新的網路,還是為了解決網路連接問題,修改IP地址都是一個常見的操作。本文將詳細介紹如何在Windows系統中修改IP地址,包括靜態IP地址的設置和動態IP地址的獲取。 IP地址是什麼? IP地址是互聯網協議地址的簡稱…...
Python中的23种设计模式:详细分类与总结
设计模式是解决特定问题的通用方法,分为创建型模式、结构型模式和行为型模式三大类。以下是对每种模式的详细介绍,包括其核心思想、应用场景和优缺点。 一、创建型模式(Creational Patterns) 创建型模式关注对象的创建࿰…...
日历使用及汉化——fullcalendar前端
官网 FullCalendar - JavaScript Event Calendar 引入项目 <link hrefhttps://cdnjs.cloudflare.com/ajax/libs/fullcalendar/5.10.1/main.min.css relstylesheet /><script srchttps://cdnjs.cloudflare.com/ajax/libs/fullcalendar/5.10.1/main.min.js></sc…...
视频截断,使用 FFmpeg
使用 FFmpeg 截取视频并去掉 5 分 49 秒后的内容,可以使用以下命令: ffmpeg -i input.mp4 -t 00:05:49 -c:v libx264 -crf 23 -preset medium -c:a aac -b:a 192k output.mp4-i input.mp4: 指定输入视频文件 input.mp4。 -t 00:05:49&#x…...
使用系统内NCCL环境重新编译Pytorch
intro: 费了老大劲,来重新编译pytorch,中间报了无数错误。原生的编译好的pytorch是直接用的其自带NCCL库,并且从外部是不能进行插桩的,因为根本找不到libnccl.so文件。下面记录下重新编译pytorch的过程。指定USE_SYSTEM_NCCL1。这…...
1. Klipper从安装到运行
本文记录Klipper固件从安装,配置到运行的详细过程 Klipper是3D打印机固件之一,它通常运行在linux系统(常使用Debian,其它的linux版本也可以)上,因此需要一个能运行Linux系统的硬件,比如电脑&am…...
docker 卸载与安装
卸载 查询之前安装的docker, 没有查到则不用卸载删除 yum list installed | grep docker 卸载安装包 yum remove docker-* -y 删除镜像、容器、默认挂载卷 rm -rf /var/lib/docker 安装 -ce 安装稳定版本 -y 当安装过程提示选择全部为 "yes" yum install d…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
