对抗攻击算法:FGSM和PGD
FGSM
传送门
FGSM 利用了梯度上升的思想,通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向,并沿着这个方向对图像进行微小的扰动。
FGSM 的基本想法是,沿着这个梯度的符号方向对图像进行微调,以最大化损失函数。具体公式为:
FGSM攻击算法代码:
# 定义 FGSM 攻击函数
def fgsm_attack(image, epsilon, data_grad):# 生成扰动方向sign_data_grad = data_grad.sign()# 生成对抗样本perturbed_image = image + epsilon * sign_data_grad# 对抗样本像素值范围约束在 [0,1]perturbed_image = torch.clamp(perturbed_image, 0, 1)return perturbed_image
PGD:
传送门
PGD算法在论文 《Towards Deep Learning Models Resistant to Adversarial Attacks 》中提出,它既是产生对抗样本的攻击算法,也是对抗训练的防御算法。
除此之外,PGD算法也是一阶中的最强攻击(一阶是指利用一阶导数)
设想目标模型如果是一个线性模型,损失函数对输入的导数一定是一个固定值,一次迭代和多次迭代时扰动的方向都不会发生改变,但是,如果目标模型为非线性,每次迭代之间的方向都有可能会发生变化,这时FGSM的单次迭代效果肯定不如PGD的效果好。FGSM算法通过一步计算,可能达不到最优效果,而PGD算法则是每次走一小步,但是多走几次,如果超过了扰动半径为ε的空间,就重新映射回来。
下面来看一下PGD算法的公式:
这里主要看一下公式最前面的投影到x+S的意思:就是通过一系列操作得到对抗样本后,将对抗样本减去原始图像得到了扰动值,然后将扰动值限制在-ε到+ε之间,得到了新的扰动值,原始图像加上新的扰动值就是最终生成的对抗样本。
关于对式子中sgn(L(θ,x,y)’)的理解可从FGSM中获取:
在FGSM中引入符号函数可以确定对抗扰动的方向。Goodfellow指出,如果我们的变化量与梯度的变化方向完全一致,那么将对分类结果产生较大的变化。因此,在FGSM中不需要关心具体的梯度大小,只需要知道方向即可。
符号函数sign:
PGD的核心代码:
# PGD攻击方式,属于FGSM攻击的变体
def PGD_attack(model, image, label, epsilon=0.8, alpha=0.1, iters=40):image = image.to(device)label = label.to(device)loss = nn.CrossEntropyLoss()ori_image = image.datafor i in range(iters): # 每次走一小步,但是多走几次image.requires_grad = Trueoutput = model(image)model.zero_grad()cost = loss(output, label).to(device)cost.backward()# 对抗样本 = 原始图像 + 扰动adv_image = image + alpha * image.grad.sign()# 限制扰动范围eta = torch.clamp(adv_image - ori_image, min=-epsilon, max=epsilon)# 进行下一轮的对抗样本生成image = torch.clamp(ori_image + eta, min=0, max=1).detach()return image
相关文章:

对抗攻击算法:FGSM和PGD
FGSM 传送门 FGSM 利用了梯度上升的思想,通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向,并沿着这个方向对图像进行微小的扰动。 FGSM 的基本想法是,沿着这个梯度的符号方向对图像进行微调,以最大化损失函数。具…...
【八股文】小米
文章目录 一、vector 和 list 的区别?二、include 双引号和尖括号的区别?三、set 的底层数据结构?四、set 和 multiset 的区别?五、map 和 unordered_map 的区别?六、虚函数和纯虚函数的区别?七、extern C …...

xtu oj 众数
样例输入# 3 1 0 1 2 1 1 2 3 1 1 2 2样例输出# 1 2 3 解题思路:与数组大小有关,先排序 举个例子思考一下 n4 k2 数组为1 2 3 4 如果我们想让众数那个位的值为3(即max3),3出现的次数为3,即众数为3,需要修改多少次…...
ENVI计算ROI分离度为灰色compute roi separability
我们在使用ENVI做影像分类的时候,需要采集样本兴趣区(ROI),在采集完兴趣区需要计算样本ROI的分离度。 但是有时会发下你 计算ROI分离度的选项为灰色状态不能计算。 如果不是以下问题: “一个是必须首先选择或创建至少…...

Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测
目录 效果一览基本介绍程序设计参考资料效果一览 基本介绍 基于NuSVR-Adaboost多输入单输出回归预测python代码 NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个…...
Python学习第十三天--面向对象,类和对象
一、面向过程和面向对象区别 面向过程:需要实现一个功能时,着重的是开发的步骤和过程,每个步都需要自己亲力亲为,需要编写代码(自己来做) 面向对象:需要实现一个功能时,不注重的是…...

AI运用落地思考:如何用AI进行系统运维?
1. 故障预测与预防 数据收集与分析:通过收集系统的各种运行数据,如服务器性能指标(CPU使用率、内存占用、磁盘I/O等)、网络流量数据、应用程序日志等。利用AI算法对这些海量数据进行分析,挖掘数据中的模式和相关性。例…...

springboot学习-分页/排序/多表查询的例子
最近喜欢上了springboot,真是个好的脚手架。今天继续学习分页/排序/多表查询等复杂功能。按步骤记录如下. 按步骤做的发现不可用,最终还是用的jdbctemplate解决。这也是一次经验。总计在最后。 1.maven依赖 首先从https://start.spring.io/ 选择需要的…...

windows 应用 UI 自动化实战
UI 自动化技术架构选型 UI 自动化是软件测试过程中的重要一环,网络上也有很多 UI 自动化相关的知识或资料,具体到 windows 端的 UI 自动化,我们需要从以下几个方面考虑: 开发语言 毋庸置疑,在 UI 自动化测试领域&am…...
ffmpeg命令详解
原文网址:ffmpeg命令详解_IT利刃出鞘的博客-CSDN博客 简介 本文介绍ffmpeg命令的用法。 命令示例 1.mp4和avi的基本互转 ffmpeg -i D:\input.mp4 E:\output.avi ffmpeg -i D:\input.avi E:\output.mp4 -i 表示input,即输入。后面填一个输入地址和一…...

【漏洞复现】CVE-2022-43396
漏洞信息 NVD - CVE-2022-43396 In the fix for CVE-2022-24697, a blacklist is used to filter user input commands. But there is a risk of being bypassed. The user can control the command by controlling the kylin.engine.spark-cmd parameter of conf. 背景介绍…...
文件的摘要算法(md5、sm3、sha256、crc)
为了校验文件在传输中保证完整性和准确性,因此需要发送方先对源文件产生一个校验码,并将该值传输给接收方,将附件通过ftph或http方式传输后,由接收方使用相同的算法对接收文件再获取一个新的校验码,将该值和发送方传的…...

如何借助AI生成PPT,让创作轻松又高效
PPT是现代职场中不可或缺的表达工具,但同时也可能是令人抓狂的时间杀手。几页幻灯片的制作,常常需要花费数小时调整字体、配色与排版。AI的飞速发展为我们带来了革新——AI生成PPT的技术不仅让制作流程大大简化,还重新定义了效率与创意的关系…...

云技术-docker
声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团…...
对docker安装的mysql实现主从同步
1:分别安装mysql主,从数据库 将主库容器名称改为mysql_master,将从库容器名称改为mysql_slave 安装教程:docker安装mysql 2:配置主库的my.cnf挂载文件 [mysqld] #log-bin:表示启用binlog功能,并指定二进制日志的存储目录。 log-binmysql-bin #binlog_f…...
【不定长滑动窗口】【灵神题单】【刷题笔记】
采摘水果 fruits[i]表示第i棵树上的水果种类目的是尽可能多收集水果规矩: 只有两个篮子,且每个篮子只能装一种水果,但是每个篮子能装的总量没限制一旦开始采摘,就会连续采摘,把两个篮子都用掉也就是说,采摘到最后一颗…...
AI写论文指令
一、论文选题指令 1、确定研究对象:我是一名xxx,请从以下素材内容中,结合xx相关知识,提炼出可供参考的学术概念 。以下是结合素材内容,提炼出的几个可供参考的学术概念 概念a:概念b:概念C&…...
2625扁平化嵌套数组
请你编写一个函数,它接收一个 多维数组 arr 和它的深度 n ,并返回该数组的 扁平化 后的结果。 多维数组 是一种包含整数或其他 多维数组 的递归数据结构。 数组 扁平化 是对数组的一种操作,定义是将原数组部分或全部子数组删除,…...

QT6学习第五天 第一个QT Quick程序
QT6学习第五天 第一个QT Quick程序 概述创建Qt Quick程序使用Qt资源文件 概述 如果将程序的用户界面成为前端,程序的数据存储和逻辑业务成为后端,那么传统QT Widgets程序的前后端都是用C完成的。对于现代软件开发而言,前端演化速度远快于后端…...
【开发商城系统】
在广西开发商城系统,可以按照以下步骤进行: 确定项目需求:与客户沟通,了解商城系统所需的功能和特性,并确定项目的预算和时间限制。 进行市场调研:了解广西地区的电商市场情况,包括竞争对手、消…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...