[NeurIPS 2022] Leveraging Inter-Layer Dependency for Post-Training Quantization
Contents
- Introduction
- Method
- Experiments
- References
Introduction
- 作者提出一种端到端的 PTQ 训练策略 Network-Wise Quantization (NWQ),并通过 Annealing Softmax (ASoftmax) 和 Annealing Mixup (AMixup) 改进了 AdaRound,降低了训练收敛难度
Method
-
Activation Regularization (AR). 采用端到端而非 layer/block-wise 优化每个 block 的量化损失

-
Annealing Softmax (ASoftmax). 类似于 AdaRound,采用 Adaptive Rounding,但不同的是作者采用 Softmax 而非 Sigmoid,这使得 rounding 范围由 0~1 扩展到了 n n n~ m m m,但相应得训练参数量也增加到了原来的 m − n + 1 m-n+1 m−n+1 倍 (不过作者默认采用 n = 0 , m = 1 n=0,m=1 n=0,m=1,所以 ASoftmax 的优势很大可能来自与 AdaRound 的第二点不同,也就是加速模型收敛;如果扩展 m , n m,n m,n,那么随着训练参数量的增加,如果校准数据比较少,模型容易过拟合)


此外,不同于 AdaRound 采用正则项促使 h ( V ) h(\mathbf V) h(V) 趋近 0/1,而作者认为这个正则项和量化损失其实是冲突的 (量化损失会促使 h ( V ) h(\mathbf V) h(V) 趋近 w s − ⌊ w s ⌋ \frac{\mathbf w}{s}-\lfloor\frac{\mathbf w}{s}\rfloor sw−⌊sw⌋),这会导致 AdaRound 不容易收敛;对此,作者借助 softmax temperature 帮助模型更好收敛
其中, τ t \tau^t τt 代表 iter t t t 时刻的 temperature,从 1 线性衰减到 0.01;作者还给出了 V i \mathbf V_i Vi 的初始化策略 V i = log ( σ ′ ( V ) i ) \mathbf V_i=\log(\sigma'(\mathbf V)_i) Vi=log(σ′(V)i),这样可以使得初始 rounding 与原始权重尽可能接近,证明可参考附录 A

-
Annealing Mixup (AMixup). 采用 mixup 混合全精度模型输出和量化模型输出,作为 AR 中的优化目标 a l a_l al,其中全精度模型输出在 iter t t t 所占比例从 P s = 0.5 P_s=0.5 Ps=0.5 线性衰减到 P e = 0 P_e=0 Pe=0 从而帮助模型更好收敛

Experiments
- Comprehensive Comparison.

- Ablation Study. (1) AR.
(2) ASoftmax.



(3) AMixup.


References
- Zheng, DanDan, Yuanliu Liu, and Liang Li. “Leveraging inter-layer dependency for post-training quantization.” Advances in Neural Information Processing Systems 35 (2022): 6666-6679.
相关文章:
[NeurIPS 2022] Leveraging Inter-Layer Dependency for Post-Training Quantization
Contents IntroductionMethodExperimentsReferences Introduction 作者提出一种端到端的 PTQ 训练策略 Network-Wise Quantization (NWQ),并通过 Annealing Softmax (ASoftmax) 和 Annealing Mixup (AMixup) 改进了 AdaRound,降低了训练收敛难度 Metho…...
ubuntu+ROS推视频流至网络
目录 概述 工具 ros_rtsp 接受流 web_video_server 源码安装 二进制安装 ros接收rtsp视频流 总结 概述 ros_rtsp功能包可以将ros视频流以rtsp形式推送 web_video_server功能包可以将ros视频话题推HTTP流 rocon_rtsp_camera_relay可以接受同一网段下的rtsp视频流输出为…...
PHP 去掉特殊不可见字符 “\u200e“
描述 最近在排查网站业务时,发现有数据匹配失败的情况 肉眼上完全看不出问题所在 当把字符串 【M24308/23-14F】复制出来发现 末尾有个不可见的字符 使用删除键或左右移动时才会发现 最后测试通过 var_dump 打印 发现这个"空字符"占了三个长度 …...
深度学习—BP算法梯度下降及优化方法Day37
梯度下降 1.公式 w i j n e w w i j o l d − α ∂ E ∂ w i j w_{ij}^{new} w_{ij}^{old} - \alpha \frac{\partial E}{\partial w_{ij}} wijnewwijold−α∂wij∂E α为学习率 当α过小时,训练时间过久增加算力成本,α过大则容易造成越过最…...
elasticsearch8.16 docker-compose 多机器集群安装
在网上找了一圈, 发现要么就是单机版的部署了多个节点, 很少有多台机器部署集群的, 有些就拿官网的例子写一写, 没有实战经验, 下面分享一个教程, 实实在在的多台机器, 每台机器部署2个节点的例子 先上.env , docker-compose.yml文件, 这个文件是核心, 里面掺杂太多坑, 已经帮你…...
Flink--API 之 Source 使用解析
目录 一、Flink Data Sources 分类概览 (一)预定义 Source (二)自定义 Source 二、代码实战演示 (一)预定义 Source 示例 基于本地集合 基于本地文件 基于网络套接字(socketTextStream&…...
uniapp在小程序连接webScoket实现余额支付
webScoket文档:uni.connectSocket(OBJECT) | uni-app官网 /plugins/event.js const Dep function() {this.Evens Object.create(null); } class Event {constructor({dep new Dep()} {}) {if (dep.constructor Object && Object.keys(dep).length 0…...
Spring Boot【三】
自动注入 xml中可以在bean元素中通过autowire属性来设置自动注入的方式: <bean id"" class"" autowire"byType|byName|constructor|default" /> byName:按照名称进行注入 byType:按类型进行注入 constr…...
R 因子
R 因子 引言 在金融领域,风险管理和投资策略的优化一直是核心议题。传统的风险度量工具,如波动率、Beta系数等,虽然在一定程度上能够帮助投资者理解市场的波动和资产的相对风险,但它们往往无法全面捕捉到市场动态的复杂性。因此…...
【博主推荐】C# Winform 拼图小游戏源码详解(附源码)
文章目录 前言摘要1.设计来源拼图小游戏讲解1.1 拼图主界面设计1.2 一般难度拼图效果1.3 普通难度拼图效果1.4 困难难度拼图效果1.5 地域难度拼图效果1.6 内置五种拼图效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载结束语 前言 在数字浪潮汹涌澎湃的时代,程序开…...
深入解析 MySQL 启动方式:`systemctl` 与 `mysqld` 的对比与应用
目录 前言1. 使用 systemctl 启动 MySQL1.1 什么是 systemctl1.2 systemctl 启动 MySQL 的方法1.3 应用场景1.4 优缺点优点缺点 2. 使用 mysqld 命令直接启动 MySQL2.1 什么是 mysqld2.2 mysqld 启动 MySQL 的方法2.3 应用场景2.4 优缺点优点缺点 3. 对比分析结语 前言 MySQL …...
【python】windows pip 安装 module 提示 Microsoft Visual C++ 14.0 is required 处理方法
参考链接:https://blog.csdn.net/qzzzxiaosheng/article/details/12511900 1.问题引入 在使用pip 安装一些module经常会出现报错: Microsoft Visual C 14.0 is required. Get it with “Microsoft Visual C Build Tools很明显这是缺少C的编译的相关依…...
python爬虫案例——猫眼电影数据抓取之字体解密,多套字体文件解密方法(20)
文章目录 1、任务目标2、网站分析3、代码编写1、任务目标 目标网站:猫眼电影(https://www.maoyan.com/films?showType=2) 要求:抓取该网站下,所有即将上映电影的预约人数,保证能够获取到实时更新的内容;如下: 2、网站分析 进入目标网站,打开开发者模式,经过分析,我…...
go sync.WaitGroup
1、数据结构 type WaitGroup struct {noCopy noCopystate atomic.Uint64 // high 32 bits are counter, low 32 bits are waiter count.sema uint32 } 计数器:原子变量,高32位用于为协程计数,低32位为等待计数(被Wait阻塞等待&a…...
Libevent库-http通信不同请求方式的处理
做项目的时候用到了http通信,同事用libevent库写的,特此记录后端从前端拿到消息后的处理方式 void CHTTPTest::request(const std::any & data) {// data 是从前端拿到的数据void *obj std::any_cast<void *>(data); // std::any是C17新标准…...
关于node全栈项目打包发布linux项目问题总集
1.用pm2部署nest 说明:如果一开始将nest直接打包放到linux服务器上用pm2执行则会报错,这是因为tsconfig.build.tsbuildinfo文件的路径以及相关依赖问题。 报错会为:什么东西找不到.... 所以建议以下为步骤一步一步配置 将整个nest添加压缩包直…...
常见的上、下采样方法
常见的上采样方法 反卷积(Deconvolution)或转置卷积(Transpose Convolution):通过学习可逆卷积核来进行上采样,增加特征图的尺寸。插值(Interpolation)ÿ…...
如何解决 java.rmi.NotBoundException: RMI 中没有绑定的对象问题?亲测有效的解决方法!
java.rmi.NotBoundException 是 Java RMI(Remote Method Invocation)中的一个常见异常,它通常出现在远程方法调用过程中,表示在 RMI 注册表中找不到指定的绑定对象。换句话说,当客户端尝试查找一个远程对象(…...
设计模式:14、抽象工厂模式(配套)
目录 0、定义 1、抽象工厂模式的四种角色 2、抽象工厂的UML类图 3、示例代码 0、定义 提供一个创建一系列或相互依赖对象的接口,而无须指定它们具体的类。 1、抽象工厂模式的四种角色 抽象产品(Product):一个抽象类或接口&a…...
Linux环境基础开发工具使用
目录 1. Linux软件包管理器yum 1.1 什么是软件包 1.2 Linux软件生态 1.3 关于rzsz 1.4 注意事项 1.5 查看软件包 2. Linux编辑器-vim使用 2.1 vim的基本概念 2.2 vim的基本操作 2.3 简单vim配置 3. 编译器gcc/g 3.1 背景知识 3.2 gcc编译选项 3.2.1 预处理…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
