DAMODEL丹摩|部署FLUX.1+ComfyUI实战教程
本文仅做测评体验,非广告。
文章目录
- 1. FLUX.1简介
- 2. 实战
- 2. 1 创建资源
- 2. 1 ComfyUI的部署操作
- 2. 3 部署FLUX.1
- 3. 测试
- 5. 释放资源
- 4. 结语
1. FLUX.1简介
FLUX.1是由黑森林实验室(Black Forest Labs)开发的开源AI图像生成模型。它拥有12B(120亿)参数,是迄今为止最大的文生图模型之一。FLUX.1以其卓越的图像质量、高度逼真的人体解剖学表现和先进的提示词遵循能力而脱颖而出,为AI图像生成设定了新的行业标准。
FLUX.1包含三种变体,以满足不同用户的需求:
- FLUX.1 Pro:顶级性能版本,适合需要最高图像质量和详细输出的商业应用。
- FLUX.1 Dev:开源非商业用途版本,是从FLUX.1 Pro提炼而来,具有类似的质量和提示词能力,同时比相同大小的标准模型更高效。
- FLUX.1 Schnell:快速高效的版本,专为本地开发和个人使用量身定制,在Apache2.0许可下公开可用。它在生成速度上具有明显优势,同时对内存的占用也是最小的。
FLUX.1的竞争力:
- 大规模参数:拥有12B参数,是最大的开源文本到图像模型之一。
- 多模态架构:基于多模态和并行扩散Transformer块的混合架构,提供强大的图像生成能力。
- 高性能变体:提供三种不同性能和用途的模型变体。
- 图像质量:在视觉质量、提示词遵循、大小/纵横比可变性、字体和输出多样性等方面超越了其他流行的模型。
- 开源和可访问性:部分模型变体如FLUX.1 Dev和FLUX.1 Schnell是开源的,易于研究和非商业应用。
- 技术创新:引入了流匹配训练方法、旋转位置嵌入和并行注意力层,提高了模型性能和硬件效率。
FLUX.1的应用场景广泛,包括媒体和娱乐、艺术创作与设计、广告和营销、教育和研究以及内容创作等多个领域。它能够帮助用户轻松将创意愿景转化为具体视觉效果,是一个强大的AI图像生成工具。

2. 实战
丹摩平台链接
2. 1 创建资源

-
在创建页面可以看到丹摩提供了三种付费方式,本教程使用按量付费,如果有长期的需求,可以自行选择包月或包日。
-
丹摩还提供了非常多种不同层次的配置供选择,这里选用第一种NVIDIA-GeForce-RTX-4090,你可以根据个人需求选择更高的配置。
-
接着是数据硬盘,默认是100G数据盘和50G数据盘,对于FLUX.1模型,建议将数据盘至少增加至150GB。
-
安装镜像,选择镜像市场点加号就可以看到许多类型与版本的基础镜像,这些镜像中已经包含了系统与对应的框架环境,开箱即用。这里选用PyTorch2.4.0。
-
创建密钥对(增加安全性,可跳过)

自定义一个名字后妥善保管下载下来的秘钥文件。

然后选择刚刚创建的密钥对。

最后点击右下角的立即创建就好了。
配置总览:

创建后自动跳转到如下界面,耐心等待创建完成。

创建完成后点击黄字就可以跳转到云实例进行操作了。

进入云实例后选择Terminal

就可以进入到 Linux 的命令行界面,然后就可以进行下一步操作了。
注:进入后先输入
clear
就可以清除系统的红色提示。

2. 1 ComfyUI的部署操作
在命令行中输入以下两个代码中的一个,推荐使用第二个与CSDN合作的 gitcode 的域名,下载比 github 快很多。
# github官方代码仓库
git clone https://github.com/comfyanonymous/ComfyUI.git
# gitCode-github加速计划代码仓库
git clone https://gitcode.com/gh_mirrors/co/ComfyUI.git
输入后回车,等待几秒,出现下图的目录就说明克隆项目成功了。

双击左边的ComfyUI就可以进入目录。

这里便是ComfyUI的项目文件。
接下来的操作需要Linux基础,如果你没学过,照做就好。
cd ComfyUI/
pip install -r requirements.txt --root-user-action=ignore
第一行是切换到 ComfyUI这个目录下。
第二行代码用来下载ComfyUI所需要的依赖,丹摩会自动使用国内的镜像源去下载,所以还是很快的。
下载完成后,执行:
python main.py --listen
如果出现的是类似这样的信息:

就说明ComfyUI部署完成。
2. 3 部署FLUX.1
在下面的三行代码选取一个:
wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar
wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar
wget http://file.s3/damodel-openfile/FLUX.1/flux_text_encoders.tar
作用依次为:
- 下载完整FLUX.1-dev模型
- 下载完整FLUX.1-schnell模型
- 下载完整Clip模型
安装之前先按 ctrl+c 退出刚才进入的 python 程序。
这里采用第一个进行安装。
安装包非常大,所以需要耐心等待,不过放心,下载操作发生在云端,不会占用你的带宽。

下载完成后进行解压:
tar -xf FLUX.1-dev.tar
这么大的文件解压也需要挺长时间,出现如下界面时耐心等待,不要进行任何操作。

解压完成后:

接下来移动一些文件到指定的地方:
cd /root/workspace/ComfyUI/FLUX.1-dev
mv flux1-dev.safetensors /root/workspace/ComfyUI/models/unet/
mv ae.safetensors /root/workspace/ComfyUI/models/vae/
- 进入解压后的文件夹。(如果没有解压到这个位置,请自行修改路径)
- 后面两行都是移动文件的位置,不多解释。
cd ../
切换到上级目录(/root/workspace/ComfyUI/)。
执行:
wget http://file.s3/damodel-openfile/FLUX.1/flux_text_encoders.tar
等待下载完成后进行解压:
tar -xf flux_text_encoders.tar
解压完成后再次进行文件移动:
cd /root/workspace/ComfyUI/flux_text_encoders
mv clip_l.safetensors /root/workspace/ComfyUI/models/clip/
mv t5xxl_fp16.safetensors /root/workspace/ComfyUI/models/clip/
这样部署就完成了。
3. 测试
执行:
cd /root/workspace/ComfyUI
python main.py --listen
- 切换到项目路径。
- 执行项目。
如果你出现如下报错:

依次执行:
apt-get update
apt-get install lsof
安装lsof,安装完成后执行:
sudo kill -9 $(sudo lsof -t -i:8188)
这样就能正常运行了:

回到丹摩平台:


输入8188并创建。

将链接复制下来访问就能进入页面:

点击右侧大大的Load,加载你的工作流就可以运行了。
5. 释放资源
如果你不打算长期使用创建的实例,一定要释放资源,不然会持续扣费。

4. 结语
在本教程中,我们不仅探索了FLUX.1和ComfyUI的强大功能,还体验了丹摩平台的便捷性和高效性。
丹摩平台以其用户友好的界面、灵活的资源配置和即开即用的便捷性,为用户提供了一个理想的AI开发和部署环境。
谢谢你的阅读,喜欢的话来个点赞收藏评论关注吧!
我会持续更新更多优质文章
相关文章:
DAMODEL丹摩|部署FLUX.1+ComfyUI实战教程
本文仅做测评体验,非广告。 文章目录 1. FLUX.1简介2. 实战2. 1 创建资源2. 1 ComfyUI的部署操作2. 3 部署FLUX.1 3. 测试5. 释放资源4. 结语 1. FLUX.1简介 FLUX.1是由黑森林实验室(Black Forest Labs)开发的开源AI图像生成模型。它拥有12…...
请求(request)
目录 前言 request概述 request的使用 获取前端传递的数据 实例 请求转发 特点 语法 实例 实例1 实例2 【关联实例1】 域对象 组成 作用范围: 生命周期: 使用场景: 使用步骤 存储数据对象 获得数据对象 移除域中的键值…...
关于VNC连接时自动断联的问题
在服务器端打开VNC Server的选项设置对话框,点左边的“Expert”(专家),然后找到“IdleTimeout”,将数值设置为0,点OK关闭对话框。搞定。 注意,服务端有两个vnc服务,这俩都要设置ide timeout为0才行 附件是v…...
C语言strtok()函数用法详解!
strtok 是 C 标准库中的字符串分割函数,用于将一个字符串拆分成多个部分(token),以某些字符(称为分隔符)为界限。 函数原型 char *strtok(char *str, const char *delim);参数: str:…...
【docker 拉取镜像超时问题】
问题描述 在centosStream8上安装docker,使用命令sudo docker run hello-world 后出现以下错误: Error response from daemon: Get "https://registry-1.docker.io/v2/": net/http: request canceled while waiting for connection (Client.Ti…...
模拟手机办卡项目(移动大厅)--结合面向对象、JDBC、MYSQL、dao层模式,使用JAVA控制台实现
目录 1. 项目需求 2. 项目使用的技术 3.项目需求分析 3.1 实体类和接口 4.项目结构 5.业务实现 5.1 登录 5.1.1 实现步骤 5.1.2 原生代码问题 编辑 5.1.3 解决方法 1.说明: 2. ResultSetHandler结果集处理 5.1.4 代码 5.1.5 实现后的效果图 登录成功…...
机器学习—大语言模型:推动AI新时代的引擎
云边有个稻草人-CSDN博客 目录 引言 一、大语言模型的基本原理 1. 什么是大语言模型? 2. Transformer 架构 3. 模型训练 二、大语言模型的应用场景 1. 文本生成 2. 问答系统 3. 编码助手 4. 多语言翻译 三、大语言模型的最新进展 1. GPT-4 2. 开源模型 …...
C++:探索哈希表秘密之哈希桶实现哈希
文章目录 前言一、链地址法概念二、哈希表扩容三、哈希桶插入逻辑四、析构函数五、删除逻辑六、查找七、链地址法代码实现总结 前言 前面我们用开放定址法代码实现了哈希表: C:揭秘哈希:提升查找效率的终极技巧_1 对于开放定址法来说&#…...
具身智能高校实训解决方案——从AI大模型+机器人到通用具身智能
一、 行业背景 在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。这些大模型具有海量的参数和强大的语言理解、知识表示能力,能够为机器人的行为决策提供更丰富的信息和更智能的指导。然而,单纯的大模型在面对复杂多变的现实…...
【消息序列】详解(8):探秘物联网中设备广播服务
目录 一、概述 1.1. 定义与特点 1.2. 工作原理 1.3. 应用场景 1.4. 技术优势 二、截断寻呼(Truncated Page)流程 2.1. 截断寻呼的流程 2.2. 示例代码 2.3. 注意事项 三、无连接外围广播过程 3.1. 设备 A 启动无连接外围设备广播 3.2. 示例代…...
【RL Base】强化学习核心算法:深度Q网络(DQN)算法
📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅…...
深入浅出 Python 网络爬虫:从零开始构建你的数据采集工具
在大数据时代,网络爬虫作为一种数据采集技术,已经成为开发者和数据分析师不可或缺的工具。Python 凭借其强大的生态和简单易用的语言特点,在爬虫领域大放异彩。本文将带你从零开始,逐步构建一个 Python 网络爬虫,解决实…...
美国发布《联邦风险和授权管理计划 (FedRAMP) 路线图 (2024-2025)》
文章目录 前言一、战略目标实施背景2010年12月,《改革联邦信息技术管理的25点实施计划》2011年2月,《联邦云计算战略》2011年12月,《关于“云计算环境中的信息系统安全授权”的首席信息官备忘录》2022年12月,《FedRAMP 授权法案》…...
Python语法基础(三)
🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 我们这篇文章来说一下函数的返回值和匿名函数 函数的返回值 我们先来看下面的这一段函数的定义代码 # 1、返回值的意义 def func1():print(111111111------start)num166print…...
云计算之elastaicsearch logstach kibana面试题
1.ELK是什么? ELK 其实并不是一款软件,而是一整套解决方案,是三个软件产品的首字母缩写 Elasticsearch:负责日志检索和储存 Logstash:负责日志的收集和分析、处理 Kibana:负责日志的可视化 这三款软件都是开源软件,通常是配合使用,而且又先后归于 Elastic.co 公司名下,…...
【已解决】git push需要输入用户名和密码问题
解决方法: 1)查看使用的clone方式: git remote -v 2)若为HTTPS,删除原clone方式: git remote rm origin 3)添加新的clone方式: git remote add origin gitgithub.com:zludon/git_test.git …...
python的字符串处理
需求: 编写一个程序,输入一段英文句子,统计每个单词的长度,并将单词按照长度从短到长排序。 程序逻辑框图 1、用户输入一句英文句子。 2、对输入的句子进行预处理(去空格并分割为单词列表)。 3、统计每个单…...
【线程】Java多线程代码案例(2)
【线程】Java多线程代码案例(2) 一、定时器的实现1.1Java标准库定时器1.2 定时器的实现 二、线程池的实现2.1 线程池2.2 Java标准库中的线程池2.3 线程池的实现 一、定时器的实现 1.1Java标准库定时器 import java.util.Timer; import java.util.Timer…...
虚拟机之间复制文件
在防火墙关闭的前提下,您可以通过几种不同的方法将文件从一个虚拟机复制到另一个虚拟机。这里,我们假设您想要从 IP 地址为 192.168.4.5 的虚拟机上的 /tmp 文件夹复制文件到当前虚拟机(192.168.4.6)的 /tmp 文件夹下。以下是几种…...
如何为 XFS 文件系统的 /dev/centos/root 增加 800G 空间
如何为 XFS 文件系统的 /dev/centos/root 增加 800G 空间 一、前言二、准备工作三、扩展逻辑卷1. 检查现有 LVM 配置2. 扩展物理卷3. 扩展卷组4. 扩展逻辑卷四、调整文件系统大小1. 检查文件系统状态2. 扩展文件系统五、处理可能出现的问题1. 文件系统无法扩展2. 磁盘空间不足3…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
