sin函数拟合
目录
一、 目的... 1
二、 模型设计... 1
2.1 输入与输出.... 1
2.2 隐藏层设计.... 1
2.3 优化算法与损失函数.... 1
2.4 神经网络结构.... 1
三、 训练... 1
3.1 数据生成.... 2
3.2 训练过程.... 2
3.3 训练参数与设置.... 2
四、 测试与分析... 2
4.1 选取不同激活函数.... 2
4.2 增加偏置.... 3
... 4
4.3 减少训练量.... 4
4.4 损失曲线分析.... 4
4.5 模型预测分析.... 5
五、 代码... 5
- 目的
通过构建一个简单的三层神经网络,模拟正弦函数 y = sin(2πx) 的映射关系,并使用 PyTorch 框架进行训练与优化,即输入x后会产生一个和正弦函数相同结果的y。
- 模型设计
2.1 输入与输出
本研究中的神经网络模型包括输入层、隐藏层和输出层。输入层包含一个神经元,用于接收单一的自变量 x。输出层同样包含一个神经元,输出模型计算得到的结果 y,即预测的正弦值。
2.2 隐藏层设计
网络的隐藏层包含 10 个神经元。此设计旨在增强网络的非线性表达能力,使其能够准确模拟正弦函数的波动特性。激活函数选择了 Tanh(双曲正切函数),该函数的输出范围为 [-1, 1],更符合正弦波的输出特性,相较于 Sigmoid 函数,Tanh 能更有效地模拟正弦波的起伏。
2.3 优化算法与损失函数
模型使用 Adam 优化器 进行训练。Adam 优化器结合了动量和自适应学习率,能够有效加速收敛并避免梯度消失或爆炸的情况。在损失函数的选择上,本研究使用了 均方误差(MSE)损失函数,该函数能衡量网络输出与目标正弦值之间的差异,并通过最小化损失函数来优化网络参数。
2.4 神经网络结构
模型的具体结构如下:
输入层 | 1 个神经元,用于接收输入 x |
隐藏层 | 10 个神经元,激活函数为 Tanh |
输出层 | 1 个神经元,输出拟合的正弦值 |
- 训练
3.1 数据生成
为了进行模型训练,首先生成了 x 和 y 的训练数据,其中 x 在区间 [0, 1) 内均匀分布,步长为 0.01,生成 100 个数据点。对应的 y 值则通过正弦函数 y = sin(2πx) 计算得到。这些数据用于训练神经网络,使其学习到 x 与 y 之间的映射关系。
3.2 训练过程
本研究采用 随机梯度下降法(SGD) 结合 Adam 优化器 对模型进行训练。训练的核心目标是最小化均方误差损失函数,以不断调整神经网络的权重和偏置。在每次迭代中,网络通过前向传播计算输出,通过反向传播计算梯度,并利用 Adam 优化器更新网络参数。训练过程的停止条件为最大迭代次数 10,000 次,损失值逐渐趋于稳定。
3.3 训练参数与设置
训练过程中使用的主要参数如下:
学习率 | 0.001,优化器的学习率设置为 0.001 |
迭代次数 | 最大迭代次数设置为 10,000 次 |
损失函数 | 均方误差(MSE)损失函数 |
优化器 | Adam 优化器 |
- 测试与分析
- 选取不同激活函数
如图 1和图 2所示,在本模型中,我们选择使用 Tanh 激活函数而非 Sigmoid 函数,主要是因为二者的输出范围与正弦函数的特性不匹配。Sigmoid 函数的输出范围是 (0, 1),无法有效表示正弦函数的负值部分,而正弦函数的输出范围是 [-1, 1],且具有周期性的波动。相对而言,Tanh 激活函数的输出范围为 [-1, 1],更符合正弦函数的特性,能够同时表示正负值,从而使得神经网络能够更有效地拟合正弦波的起伏。因此,选择 Tanh 激活函数有助于模型更准确地模拟正弦函数。
|
|
- 增加偏置
如图 3所示,在神经网络中,增加偏置项可以显著提升模型的拟合能力。偏置项允许每个神经元在计算时具有一个额外的自由度,使得网络能够更好地适应数据的分布。在没有偏置项的情况下,神经元的输出完全依赖于输入的加权和,限制了模型的表达能力。加入偏置项后,神经元的输出不再局限于零点,能够对输入数据进行更灵活的平移,从而更准确地捕捉到数据的特征。在拟合正弦函数的任务中,增加偏置项使得网络能够更有效地模拟正弦波的起伏,改善了拟合的效果,减少了偏差,提升了模型的预测精度。
|
- 减少训练量
减少训练的 epoch 数量可能导致模型出现欠拟合,因为模型没有足够的时间来学习数据的特征,从而无法有效捕捉到数据的复杂模式。。虽然减少 epoch 数量可以节省计算资源,但这往往以牺牲模型的表现为代价。
|
- 损失曲线分析
训练过程中,损失曲线的变化呈现出明显的规律性。初期,损失值较高,说明模型尚未有效学习到正弦函数的特性。随着训练的进行,损失逐渐下降,表明模型在不断优化,逐步逼近最优解。最终,损失曲线趋于平稳,接近最小值,表明模型已经学习到了数据中的规律,达到了收敛状态。
- 模型预测分析
通过对比模型的预测值与原始数据,可以看出,预测值与实际正弦函数的值非常接近,表明模型已成功模拟了正弦函数的行为。在可视化图中,红色的点表示预测值,蓝色的点表示实际值,两者几乎完全重合,进一步验证了模型在函数拟合任务中的高效性和准确性。
- 代码
核心代码 | |
介绍:这段代码是使用 Python 编写的,主要利用了 PyTorch 和 NumPy 库来训练一个简单的神经网络模型进行数据拟合。训练过程中的损失值会被记录并展示出来,同时还会展示模型预测结果与原始数据的对比图。 | |
| import torch |
| import torch.nn as nn |
| import numpy as np |
| import matplotlib.pyplot as plt |
| import os |
| os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # 忽略重复的库文件警告 |
| class Network(nn.Module): |
| def __init__(self, n_in, n_hidden, n_out): |
| super().__init__() |
| self.layer1 = nn.Linear(n_in, n_hidden, bias=False) |
| self.layer2 = nn.Linear(n_hidden, n_out, bias=False) |
| def forward(self, x): |
| x = self.layer1(x) |
| x = torch.tanh(x) # 使用 Tanh 激活函数 |
| return self.layer2(x) |
| def generate_data(start=0.0, end=1.0, step=0.01): |
| """生成训练数据""" |
| x = np.arange(start, end, step) |
| y = np.sin(2 * np.pi * x) |
| return x.reshape(len(x), 1), y.reshape(len(y), 1) |
| def train_model(model, x, y, criterion, optimizer, num_epochs=10000): |
| """训练模型并返回训练过程中的损失值""" |
| loss_values = [] |
| for epoch in range(num_epochs): |
| y_pred = model(x) # 前向传播 |
| loss = criterion(y_pred, y) # 计算损失 |
| loss.backward() # 反向传播 |
| optimizer.step() # 更新参数 |
| loss_values.append(loss.item()) # 保存损失值 |
| optimizer.zero_grad() # 清空梯度 |
| # 每100次打印一次损失值 |
| if epoch % 100 == 0: |
| print(f'After {epoch} iterations, the loss is {loss.item()}') |
| return loss_values |
| def plot_results(x, y, h, loss_values, num_epochs): |
| """绘制原始数据、预测数据和训练损失曲线""" |
| fig, axs = plt.subplots(1, 2, figsize=(14, 6)) # 一行两列的子图布局 |
| # 第一个子图:原始数据与预测数据的散点图 |
| axs[0].scatter(x, y, label='Original Data') |
| axs[0].scatter(x, h, label='Predicted Data', color='r') |
| axs[0].set_title("Model Prediction vs Original Data") |
| axs[0].legend() |
| # 第二个子图:训练损失曲线 |
| axs[1].plot(range(num_epochs), loss_values, label='Loss Curve') |
| axs[1].set_xlabel('Epochs') |
| axs[1].set_ylabel('Loss') |
| axs[1].set_title('Training Loss') |
| axs[1].legend() |
| plt.tight_layout() # 自动调整子图间距 |
| plt.show() |
| if __name__ == '__main__': |
| # 生成数据 |
| x, y = generate_data() |
| x = torch.Tensor(x) |
| y = torch.Tensor(y) |
| # 初始化模型、损失函数和优化器 |
| model = Network(1, 10, 1) |
| criterion = nn.MSELoss() # 均方误差损失函数 |
| optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Adam优化器 |
| # 训练模型 |
| loss_values = train_model(model, x, y, criterion, optimizer, num_epochs=10000) |
| # 获取预测值 |
| h = model(x).detach().numpy() # 获取模型输出并转为numpy数组 |
| x = x.detach().numpy() # 获取输入数据 |
| # 调用绘图函数 |
| plot_results(x, y, h, loss_values, num_epochs=10000) |
相关文章:

sin函数拟合
目录 一、 目的... 1 二、 模型设计... 1 2.1 输入与输出.... 1 2.2 隐藏层设计.... 1 2.3 优化算法与损失函数.... 1 2.4 神经网络结构.... 1 三、 训练... 1 3.1 数据生成.... 2 3.2 训练过程.... 2 3.3 训练参数与设置.... 2 四、 测试与分析... 2 4.1 选取不同激活函数....…...
设置Mysql5.6允许外网访问
设置mysql用户支持外网访问步骤: 需要使用root权限登录mysql,更新mysql.user表,设置指定用户的Host字段为%,默认一般为127.0.0.1或者localhost。 1.登录数据库 1 mysql -u root -p 输入密码 1 mysql> use mysql; 2.查询hos…...

【随笔】一次JS和python中的MD5加密的记录
// 使用CryptoJS进行MD5加密和Base64编码 const sign CryptoJS.enc.Base64.stringify(CryptoJS.enc.Utf8.parse(CryptoJS.MD5(sign2encrypt).toString()));上面这段JS和下面这个python等价 def hash_and_encode(input_string):sign2encrypt input_string# 使用 hashlib 进行 …...

力扣 二叉树的中序遍历
用了递归遍历,关于树的经典例题。 题目 递归 常规做法即递归了,不会写也得背下来。递归可以大致理解方法调用自身,先写中序遍历递归的方法,递归一定要有递归出口,当遍历到节点为空时返回,即已经找到了。…...

uniapp学习(010-3 实现H5和安卓打包上线)
零基础入门uniapp Vue3组合式API版本到咸虾米壁纸项目实战,开发打包微信小程序、抖音小程序、H5、安卓APP客户端等 总时长 23:40:00 共116P 此文章包含第114p-116p的内容 文章目录 H5配置文件设置开始打包上传代码 安卓设置模拟器启动设置基础配置设置图标启动界面…...

基于DHCP,ACL的通信
该问题为华为的学习资料 1.首先把所有的PC机全部设置为DHCP 2.配置地址 3.ospf 4.dhcp 5.acl AR1 dhcp en interface GigabitEthernet0/0/0ip address 192.168.1.254 255.255.255.0 dhcp select global interface GigabitEthernet0/0/1ip address 10.1.12.1 255.255.255.…...

金融租赁系统助力企业升级与风险管理的新篇章
内容概要 在当今的商业环境中,“金融租赁系统”可谓是企业成功的秘密武器。简单来说,这个系统就像一位聪明的财务顾问,帮助企业在资金和资源的运用上达到最优化。从设备采购到项目融资,它提供了一种灵活的方式,让企业…...

linux安装部署mysql资料
安装虚拟机 等待检查完成 选择中文 软件选择 网络和主机名 开始安装 设置root密码 ADH-password 创建用户 等待安装完成 重启 接受许可证 Centos 7 64安装完成 安装mysql开始 Putty连接指定服务器 在 opt目录下新建download目录 将mysql文件传到该目录下 查看linux服务器的…...
深入理解 MongoDB:一款灵活高效的 NoSQL 数据库
在现代应用程序开发中,数据存储技术已经从传统的关系型数据库(RDBMS)扩展到多样化的 NoSQL 数据库。MongoDB 作为一款广泛使用的文档型数据库,以其灵活性、高性能和易用性成为开发者的首选之一。本篇博文将从 MongoDB 的核心概念、…...
爆改老旧笔记本---将笔记本改造为家用linux服务器
爆改老旧笔记本---将笔记本改造为家用linux服务器 linux启动盘制作镜像文件分区类型:MBR分区和GPT分区的定义MBR分区(Master Boot Record)GPT分区(GUID Partition Table)应用场景和优势MBR的应用场景和优势GPT的应用场景和优势 Li…...

RocketMQ MQTT Windows10 环境启动
RocketMQ MQTT Windows10 环境启动 参考环境和软件版本下载资源启动RocketMQ启动RocketMQ MQTT 参考 https://blog.csdn.net/weixin_43114058/article/details/140043257 https://blog.csdn.net/yangxiaovip/article/details/138355443 环境和软件版本 操作系统:…...

sd webui整合包怎么安装comfyui
环境: sd webui整合包 comfyui 问题描述: sd webui整合包怎么安装comfyui 扩展安装不成功 解决方案: 1.直接下载 ,解压到SD文件夹里(或者git拉一下) 2.ComfyUI模型共享:如果本机部署过Webui,那么ComfyUI可以与WebUI公用一套模型,防止复制大量模型浪费空间 将…...

Edify 3D: Scalable High-Quality 3D Asset Generation
Deep Imagination Research | NVIDIA 目录 一、Abstract 二、核心内容 1、多视图扩散模型 3、重建模型: 4、数据处理模块: 三、结果 1、文本到 3D 生成结果 2、图像到 3D 生成结果 3、四边形网格拓扑结构 一、Abstract NVIDIA 开发的用于高质量…...
鸿蒙HarmonyOS学习笔记(6)
定义扩展组件样式:Extend装饰器 在前文的示例中,可以使用Styles用于样式的重用,在Styles的基础上,我们提供了Extend,用于扩展原生组件样式。 说明 从API version 9开始,该装饰器支持在ArkTS卡片中使用。 从…...

蓝桥杯备赛笔记(一)
这里的笔记是关于蓝桥杯关键知识点的记录,有别于基础语法,很多内容只要求会用就行,无需深入掌握。 文章目录 前言一、编程基础1.1 C基础格式和版本选择1.2 输入输出cin和cout: 1.3 string以下是字符串的一些简介:字符串…...
在Java中使用Apache POI导入导出Excel(二)
本文将继续介绍POI的使用,上接在Java中使用Apache POI导入导出Excel(一) 使用Apache POI组件操作Excel(二) 14、读取和重写工作簿 try (InputStream inp new FileInputStream("workbook.xls")) { //Inpu…...

linux 中后端jar包启动不起来怎么回事 -bash: java: 未找到命令
一、用以下命令检查jdk版本 输入:java -version,如果JDK 环境变量没有配置,你会看到如下提示 二、配置jdk环境 1.先找到/etc/profile文件,然后在该文件最后面加上以下配置 export JAVA_HOME/usr/local/jdk-21.0.1 export PATH$…...

六大排序算法:插入排序、希尔排序、选择排序、冒泡排序、堆排序、快速排序
本章讲述数据结构中的六大排序算法 欢迎大佬们踊跃讨论,感谢大家支持! 我的博客主页链接 六大排序算法 一.插入排序1.1 直接插入排序1.2 希尔排序 二.选择排序2.1 单向选择排序2.2双向选择排序2.3 堆排序 三.交换排序3.1 冒泡排序3.2 快速排序3.2.1 Hoa…...
快速排序(C++实现)
基本思想 任取一个元素为中心,所有比它小的元素一律前放,比他大的元素一律后放,形成左右两个子表;对各子表重新选择中心元素并依此规则调整,直到每个子表的元素只剩一个。 通过一趟排序,将待排序记录分割成…...
【数据库知识】数据库关系代数表达式
文章目录 概述一、关系代数表达式的基本组成部分二、关系代数运算符及其使用样例三、关系代数表达式的优化四、总结 概述 数据库关系代数表达式是关系数据库系统查询语言的理论基础,它使用一系列符号和运算符来描述从一个或多个关系(即表)中…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...

Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...