多阶段报童问题动态规划求解,Python 实现
使用 python 编写了多阶段报童模型的动态规划算法。
- 使用了 python 的装饰器 @dataclass ,方便定义类
- 尝试使用并行计算,没有成功,极易出错。动态规划中使用并行计算,还是挺有挑战的;而且并行计算不一定总是比非并行运算速度快。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 28 00:00:35 2024@author: zhenchen@Python version: 3.10@disp: stochastic dynamic programming to compute multi-period newsvendor problems;use @dataclass for ease of defining classes;parallel computing unsucessful, highly prone to make mistakes;
"""import scipy.stats as sp
from dataclasses import dataclass
from functools import lru_cache
import time@dataclass(frozen=True)
class State:"""state in a period: initial inventory """t: intiniInventory: float@dataclass
class Pmf:"""probability mass function for the demand distribution in each period"""truncQuantile: floatdistribution_type: str def get_pmf(self, distribution_parameters):"""Parameters----------distribution_parameters: list, may be multi dimensionalDESCRIPTION. parameter values of the distributionReturns-------pmf : 3-D listDESCRIPTION. probability mass function for the demand in each period"""if (self.distribution_type == 'poisson'): mean_demands = distribution_parametersmax_demands = [sp.poisson.ppf(self.truncQuantile, d).astype(int) for d in mean_demands]T = len(mean_demands)pmf = [[[k, sp.poisson.pmf(k, mean_demands[t])/self.truncQuantile] for k in range(max_demands[t])] for t in range(T)]return pmf@dataclass(eq = False)
class StochasticInventory:"""multi period stochastic inventory model class""" T: int capacity: float # maximum ordering quantityfixOrderCost: floatvariOrderCost: floatholdCost: floatpenaCost: floattruncationQ: floatmax_inventory: floatmin_inventory: floatpmf: [[[]]]cache_actions = {}def get_feasible_action(self, state:State):"""feasible actions for a certain state""" return range(self.capacity + 1)def state_tran(self, state:State, action, demand):"""state transition function""" nextInventory = state.iniInventory + action - demandnextInventory = self.max_inventory if self.max_inventory < nextInventory else nextInventorynextInventory = self.min_inventory if self.min_inventory > nextInventory else nextInventoryreturn State(state.t + 1, nextInventory)def imme_value(self, state:State, action, demand):"""immediate value function"""fixCost = self.fixOrderCost if action > 0 else 0variCost = self.variOrderCost * actionnextInventory = state.iniInventory + action - demandnextInventory = self.max_inventory if nextInventory > self.max_inventory else nextInventorynextInventory = self.min_inventory if nextInventory < self.min_inventory else nextInventoryholdingCost = self.holdCost * max(0, nextInventory)penaltyCost = self.penaCost * max(0, -nextInventory)return fixCost + variCost + holdingCost + penaltyCost# recursion@ lru_cache(maxsize = None)def f(self, state:State):"""recursive function"""bestQValue = float('inf')bestQ = 0for action in self.get_feasible_action(state):thisQValue = 0for randDandP in self.pmf[state.t - 1]:thisQValue += randDandP[1] * self.imme_value(state, action, randDandP[0])if state.t < T:thisQValue += randDandP[1] * self.f(self.state_tran(state, action, randDandP[0]))if thisQValue < bestQValue:bestQValue = thisQValuebestQ = actionself.cache_actions[str(state)] = bestQreturn bestQValuedemands = [10, 20, 10, 20]
distribution_type = 'poisson'
capacity = 100 # maximum ordering quantity
fixOrderCost = 0
variOderCost = 1
holdCost = 2
penaCost = 10
truncQuantile = 0.9999 # trancated quantile for the demand distribution
maxI = 500 # maximum possible inventory
minI = -300 # minimum possible inventorypmf = Pmf(truncQuantile, distribution_type).get_pmf(demands)
T = len(demands)if __name__ == '__main__': start = time.process_time()model = StochasticInventory(T,capacity, fixOrderCost, variOderCost,holdCost, penaCost, truncQuantile,maxI, minI,pmf)ini_state = State(1, 0)expect_total_cost = model.f(ini_state)print('****************************************')print('final expected total cost is %.2f' % expect_total_cost)optQ = model.cache_actions[str(State(1, 0))]print('optimal Q_1 is %.2f' % optQ)end = time.process_time()cpu_time = end - startprint('cpu time is %.4f s' % cpu_time)相关文章:
多阶段报童问题动态规划求解,Python 实现
使用 python 编写了多阶段报童模型的动态规划算法。 使用了 python 的装饰器 dataclass ,方便定义类尝试使用并行计算,没有成功,极易出错。动态规划中使用并行计算,还是挺有挑战的;而且并行计算不一定总是比非并行运算…...
【C++进阶篇】像传承家族宝藏一样理解C++继承
文章目录 须知 💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力! 👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗࿱…...
Java基础面试题09:Java异常处理完成以后,Exception对象会发生什么变化?
一、Java异常(Exception)基本概念 什么是异常? 简单来说,异常就是程序运行时发生了意外的“错误”或者“不正常现象”,导致程序中断。异常处理的目标是让程序在出现问题时能稳住,不会直接崩溃。 1.1 异常…...
mysql sql语句 between and 是否边界值
在 MySQL 中,使用 BETWEEN 运算符时,边界值是包括在内的。这意味着 BETWEEN A AND B 查询会返回 A 和 B 之间的所有值,包括 A 和 B 自身。 示例 假设有一个表 employees,其中有一个 salary 列,您可以使用以下查询&am…...
Java接收LocalDateTime、LocalDatee参数
文章目录 引言I java服务端的实现1.1 基于注解规范日期格式1.2 json序列化和反序列化全局配置自动处理日期格式化II 知识扩展: 枚举的转换和序列化III 签名注意事项引言 应用场景举例:根据时间段进行分页查询数据 前后端交互日期字符串统一是yyyy-MM-dd HH:mm:ss 或者yyyy-M…...
方差分析、相关分析、回归分析
第一章:方差分析 1.1 方差分析概述 作用: 找出关键影响因素,并进行对比分析,选择最佳组合方案。影响因素: 控制因素(人为可控)和随机因素(人为难控)。控制变量的不同水平: 控制变量的不同取值…...
SQLModel入门
SQLModel 系统性指南 目录 简介 什么是 SQLModel?为什么使用 SQLModel? 安装快速入门 定义模型创建数据库和表 基本 CRUD 操作 创建(Create)读取(Read)更新(Update)删除࿰…...
单片机蓝牙手机 APP
目录 一、引言 二、单片机连接蓝牙手机 APP 的方法 1. 所需工具 2. 具体步骤 三、单片机蓝牙手机 APP 的应用案例 1. STM32 蓝牙遥控小车 2. 手机 APP 控制 stm32 单片机待机与唤醒 3. 智能家居系统 4. 智能记忆汽车按摩座椅 四、单片机蓝牙手机 APP 的功能 1. 多种控…...
PostgreSQL在Linux环境下的常用命令总结
标题 登录PgSQL库表基本操作命令新建库表修改库表修改数据库名称:修改表名称修改表字段信息 删除库表pgsql删除正在使用的数据库 须知: 以下所有命令我都在Linux环境中执行验证过,大家放心食用,其中的实际名称换成自己的实际名称即…...
Unity shaderlab 实现LineSDF
实现效果: 实现代码: Shader "Custom/LineSDF" {Properties{}SubShader{Tags { "RenderType""Opaque" }Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"struct appdata{floa…...
Ubuntu中的apt update 和 apt upgrade
apt update 和 apt upgrade 是 Debian 及其衍生发行版(如 Ubuntu)中常用的两个 APT 包管理命令,它们各自执行不同的任务: apt update: 这个命令用于更新本地软件包列表。当你运行 apt update 时,APT 会从配置的源&…...
Android 中 Swipe、Scroll 和 Fling 的区别
Android 中 Swipe、Scroll 和 Fling 的区别 Swipe(滑动)Scroll(滚动)Fling(甩动)三者之间的区别代码示例 (Fling)总结 在 Android 应用中,Swipe、Scroll 和 Fling 都是用户在触摸屏幕上进行的滑…...
linux基础2
声明! 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&#…...
如何通过智能生成PPT,让演示文稿更高效、更精彩?
在快节奏的工作和生活中,我们总是追求更高效、更精准的解决方案。而在准备演示文稿时,PPT的制作往往成为许多人头疼的问题。如何让这项工作变得轻松且富有创意?答案或许就在于“AI生成PPT”这一智能工具的广泛应用。我们就来聊聊如何通过这些…...
执法记录仪数据自动备份光盘刻录归档系统
派美雅按需研发的执法记录仪数据自动备份光盘刻录归档系统,为用户提供数据自动上传到刻录服务端、数据上传后自动归类,全自动对刻录端视频文件大小进行实时监测,满盘触发刻录,无需人工干预。告别传统刻录存在的痛点,实…...
启动SpringBoot
前言:大家好我是小帅,今天我们来学习SpringBoot 文章目录 1. 环境准备2. Maven2.1 什么是Maven2.2 创建⼀个Maven项⽬2.3 依赖管理2.3.1 依赖配置2.3.2 依赖传递2.3.4 依赖排除2.3.5 Maven Help插件(plugin) 2.4 Maven 仓库2.6 中…...
重定向操作和不同脚本的互相调用
文章目录 前言重定向操作和不同脚本的互相调用 前言 声明 学习视频来自B站UP主 泷羽sec,如涉及侵权马上删除文章 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负 重定向操作和不同脚本的互相调用 1.不同脚本的互相…...
51单片机教程(九)- 数码管的动态显示
1、项目分析 通过演示数码管动态显示的操作过程。 2、技术准备 1、 数码管动态显示 4个1位数码管和单片机如何连接 a、静态显示的连接方式 优点:不需要动态刷新;缺点:占用IO口线多。 b、动态显示的连接方式 连接:所有位数码…...
golang支持线程安全和自动过期map
在 Golang 中,原生的 map 类型并不支持并发安全,也没有内置的键过期机制。不过,有一些社区提供的库和方案可以满足这两个需求:线程安全和键过期。 1. 使用 sync.Map(线程安全,但不支持过期) Go…...
机器学习之RLHF(人类反馈强化学习)
RLHF(Reinforcement Learning with Human Feedback,基于人类反馈的强化学习) 是一种结合人类反馈和强化学习(RL)技术的算法,旨在通过人类的评价和偏好优化智能体的行为,使其更符合人类期望。这种方法近年来在大规模语言模型(如 OpenAI 的 GPT 系列)训练中取得了显著成…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
