当前位置: 首页 > news >正文

使用 Jina Embeddings v2 在 Elasticsearch 中进行后期分块

作者:来自 Elastic Gustavo Llermaly

在 Elasticsearch 中使用 Jina Embeddings v2 模型并探索长上下文嵌入模型的优缺点。

在本文中,我们将配置和使用 jina-embeddings-v2,这是第一个开源 8K 上下文长度嵌入模型,首先使用 semantic_text 进行 OOTB 实现,然后实现 Late Chunking。

长上下文模型 - long-context models

我们通常看到上下文长度为 512 个 token 的嵌入模型,这意味着如果我们尝试创建更长的嵌入,则只有前 512 个 token 会添加到向量字段中。这些短上下文的问题在于,块不会知道整个上下文,而只会知道块内的文本:

正如你在图片中看到的,在块 1 中我们知道我们在谈论 Sarah Johnson,但在块 2 中我们失去了直接引用。因此,随着文档变长,它可能会错过 Sarah Johnson 首次被提及时的依赖关系,并且不会将 “Sarah Johnson”、“She” 和 “her” 指代同一个人联系起来。当然,如果有不止一个人被称为 her/she,这会变得更加复杂,但现在让我们看看解决这个问题的第一种方法。

旨在生成文本的传统长上下文模型只关心对前面单词的依赖关系,因此输入中的最后一个标记比前面的标记更重要,因为文本生成器的任务是在输入后生成下一个单词。然而,Jina Embeddings 2 模型经过三个关键阶段的训练:首先,它使用 1700 亿个单词的英语 C4 数据集进行掩码单词预训练。接下来,它使用已知相似或不相似的文本对进行成对对比训练,使用 Jina AI 的新语料库来优化嵌入,使相似的文本更接近,而不相似的文本更远。最后,使用文本三元组和负挖掘对其进行微调,结合具有相反语法极性的句子的数据集,以改进对具有相反含义的句子的嵌入可能过于接近的情况的处理。

那么,让我们看看它是如何工作的:更长的上下文长度使我们能够将第一次提到 Sarah Johnson 的引用保留在同一块中:

然而,这也有其缺点。上下文越大,意味着你将在相同维度空间内放置更多信息。这种压缩可能会稀释上下文,从嵌入中删除潜在的重要信息。另一个缺点是生成更长的嵌入需要更多的计算资源。最后,在 RAG 系统中,文本块的大小决定了你向 LLM 发送的信息量,这将影响精度、成本和延迟。好消息是你不必使用整个 8K token,你可以根据你的用例找到一个最佳点。你在文章 “Elasticsearch:检索增强生成背后的重要思想” 可以。

Jina 致力于将两者的优点结合起来,提出了一种称为 “后期分块(Late Chunking)” 的方法。后期分块包括在嵌入之后对文本进行分块,而不是先对文本进行分块,然后为每个独立的块创建嵌入。为此,你需要一个能够创建上下文感知嵌入的模型,然后你可以在保留上下文(即块之间的依赖关系和关系)的同时对生成的嵌入进行分块。

我们将在 Elasticsearch 中设置 jina-embeddings-v2 模型并将其与 semantic_text一起使用,然后为后期分块创建自定义设置。

步骤

  • 创建端点
  • 创建索引
  • 索引数据
  • 提问
  • 后期分块示例

创建端点

借助我们的 HuggingFace 开放推理服务集成(Open Inference Service integration),运行 HuggingFace 模型非常简单。你只需打开模型网页,单击 Inference API 下的 View Code,然后从那里获取 API URL。在同一屏幕中,你可以 Manage your tokens 以创建 API 密钥。

有关创建安全 token 的更多详细信息,你可以访问此处。出于本文的目的,将其设置为 read token 是可以的。

获得 url 和 api_key 后,继续创建推理端点(inference endpoint):

PUT _inference/text_embedding/jina-embeddings-v2-base-en
{"service": "hugging_face","service_settings": {"api_key": "hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "url": "https://api-inference.huggingface.co/models/jinaai/jina-embeddings-v2-base-en" }
}

如果你收到此错误 “Model jinaai/jina-embeddings-v2-base-en is currently loading”,则表示模型正在预热。请等待几秒钟,然后重试。

创建索引

我们将使用 semantic_text 字段类型。它将负责推断嵌入映射和配置,并为你进行段落分块!如果你想了解更多信息,可以阅读这篇精彩的文章。

PUT jina-embeddings
{"mappings": {"properties": {"super_body": {"type": "semantic_text","inference_id": "jina-embeddings-v2-base-en"}}}
}

这种方法将为我们处理向量配置和文档分块,从而为我们提供一个良好的起点。它将创建 250 个单词的块,其中有 100 个单词重叠。对于诸如增加块大小以利用 8K 上下文大小之类的自定义,我们必须经历一个更长的过程,我们将在后期分块部分进行探讨。

索引数据

使用 semantic_text 时,我们会用到。我们只需像往常一样索引数据即可。

PUT jina-embeddings/_bulk
{ "index" : { "_index" : "jina-embeddings", "_id" : "1" } }
{"super_body": "Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades."}
{ "index" : { "_index" : "jina-embeddings", "_id" : "2" } }
{"super_body": "She spends months at a time diving in remote locations, meticulously documenting the intricate relationships between various marine species. "}
{ "index" : { "_index" : "jina-embeddings", "_id" : "3" } }
{"super_body": "Her dedication to preserving these delicate underwater environments has inspired a new generation of conservationists."}

提出问题

现在我们可以使用语义搜索查询来向我们的数据提出问题:

GET jina-embeddings/_search 
{"query": {"semantic": {"field": "super_body","query": "who inspired taking care of the sea?"}}
}

第一个结果将如下所示:

{"_index": "jina-embeddings","_id": "1","_score": 0.64889884,"_source": {"super_body": {"text": "Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades.","inference": {"inference_id": "jina-embeddings-v2-base-en","model_settings": {"task_type": "text_embedding","dimensions": 768,"similarity": "cosine","element_type": "float"},"chunks": [{"text": "Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades.","embeddings": [-0.0064849486,-0.014192865,0.028806737,0.0026694024,... // 768 dims]}]}}}
}

后期分块示例

现在我们已经配置了嵌入模型,我们可以在 Elasticsearch 中创建自己的后期分块实现。该过程需要以下步骤:

1. 创建映射

PUT jina-late-chunking
{"mappings": {"properties": {"content_embedding": { "type": "dense_vector", "dims": 768, "element_type": "float","similarity": "cosine"},"content": { "type": "text" }}}
}

2. 加载数据

你可以在支持 Notebook 中找到完整的实现。

我们在这里不使用摄取管道方法,因为我们想要创建特殊的嵌入,而是使用一个 Python 脚本,其关键作用是获取块标记位置的注释,为整个文档生成嵌入,然后根据我们提供的长度对嵌入进行分块:

使用此代码,你可以通过按句子拆分并获取块位置来定义文本块大小。

def chunk_by_sentences(input_text: str, tokenizer: callable):"""Split the input text into sentences using the tokenizer:param input_text: The text snippet to split into sentences:param tokenizer: The tokenizer to use:return: A tuple containing the list of text chunks and their corresponding token spans"""inputs = tokenizer(input_text, return_tensors='pt', return_offsets_mapping=True)punctuation_mark_id = tokenizer.convert_tokens_to_ids('.')sep_id = tokenizer.convert_tokens_to_ids('[SEP]')token_offsets = inputs['offset_mapping'][0]token_ids = inputs['input_ids'][0]chunk_positions = [(i, int(start + 1))for i, (token_id, (start, end)) in enumerate(zip(token_ids, token_offsets))if token_id == punctuation_mark_idand (token_offsets[i + 1][0] - token_offsets[i][1] > 0or token_ids[i + 1] == sep_id)]chunks = [input_text[x[1] : y[1]]for x, y in zip([(1, 0)] + chunk_positions[:-1], chunk_positions)]span_annotations = [(x[0], y[0]) for (x, y) in zip([(1, 0)] + chunk_positions[:-1], chunk_positions)]return chunks, span_annotations

第二个函数将接收整个输入的注释(annotations)和嵌入以生成嵌入块。

def late_chunking(model_output: 'BatchEncoding', span_annotation: list, max_length=None
):token_embeddings = model_output[0]outputs = []for embeddings, annotations in zip(token_embeddings, span_annotation):if (max_length is not None):  # remove annotations which go bejond the max-length of the modelannotations = [(start, min(end, max_length - 1))for (start, end) in annotationsif start < (max_length - 1)]pooled_embeddings = [embeddings[start:end].sum(dim=0) / (end - start)for start, end in annotationsif (end - start) >= 1]pooled_embeddings = [embedding.detach().cpu().numpy() for embedding in pooled_embeddings]outputs.append(pooled_embeddings)return outputs

这是将所有内容组合在一起的部分;对整个文本输入进行标记,然后将其传递给 late_chunking 函数以对池化嵌入进行分块。

inputs = tokenizer(input_text, return_tensors='pt')
model_output = model(**inputs)
embeddings = late_chunking(model_output, [span_annotations])[0] 

经过这个过程,我们可以索引我们的文档:

# Prepare the documents to be indexed
documents = []
for chunk, new_embedding in zip(chunks, embeddings):documents.append({"_index": "jina-late-chunking","_source": {"content_embedding": new_embedding,"content": chunk,},})
# Use helpers.bulk to index
helpers.bulk(client, documents)

你可以在此处找到包含完整示例的笔记本。

请随意尝试 input_text 变量中的不同值。

3. 运行查询

你现在可以针对新数据索引运行语义搜索:

GET jina-late-chunking/_search
{"knn": {"field": "content_embedding","query_vector_builder": {"text_embedding": {"model_id": "jina-embeddings-v2-base-en","model_text": "berlin"}},"k": 10,"num_candidates": 100}
}

结果将如下所示:

{"_index": "jina-late-chunking","_id": "gGDN1JEBF7lnCNFTVZBg","_score": 0.4930191,"_source": {"content_embedding": [-0.9107036590576172,-0.57366544008255,1.0492067337036133,0.25255489349365234,-0.1283145546913147... ],"content": "Berlin is the capital and largest city of Germany, both by area and by population."}
}

结论

虽然仍处于试验阶段,但后期分块可能有很多好处,尤其是在 RAG 中,因为它允许你在对文本进行分块时保留关键上下文信息。此外,Jina 嵌入模型有助于存储较短的向量,从而占用更少的内存和存储空间,并加快搜索检索速度。因此,这两个功能与 Elasticsearch 结合使用,在使用向量搜索时提高了管理和检索信息的效率和有效性。

Elasticsearch 与业界领先的 Gen AI 工具和提供商进行了原生集成。查看我们的网络研讨会,了解如何超越 RAG 基础知识,或构建可用于生产的应用程序 Elastic Vector Database。

要为你的用例构建最佳搜索解决方案,请立即开始免费云试用或在你的本地机器上试用 Elastic。

原文:Late chunking in Elasticsearch with Jina Embeddings v2 - Search Labs

相关文章:

使用 Jina Embeddings v2 在 Elasticsearch 中进行后期分块

作者&#xff1a;来自 Elastic Gustavo Llermaly 在 Elasticsearch 中使用 Jina Embeddings v2 模型并探索长上下文嵌入模型的优缺点。 在本文中&#xff0c;我们将配置和使用 jina-embeddings-v2&#xff0c;这是第一个开源 8K 上下文长度嵌入模型&#xff0c;首先使用 semant…...

QT简易项目 数据库可视化界面 数据库编程SQLITE QT5.12.3环境 C++实现

案例需求&#xff1a; 完成数据库插入&#xff0c;删除&#xff0c;修改&#xff0c;查看操作。 分为 插入&#xff0c;删除&#xff0c;修改&#xff0c;查看&#xff0c;查询 几个模块。 代码&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget…...

python json.dump()和json.dumps()的区别

用人话总结一下 json.dump()是针对文件的json和python的转换 json.dumps()主要是针对内容数据 json.dumps(obj, skipkeysFalse, ensure_asciiTrue, check_circularTrue, allow_nanTrue, clsNone, indentNone, separatorsNone, encoding“utf-8”, defaultNone, sort_keysFalse…...

网络流学习笔记

注&#xff1a;笔者是蒟蒻&#xff0c;所以本文几乎是干货&#xff0c;枯燥无味甚至可能会引人不适&#xff0c;请读者谨慎阅读。 为了笔者快爆掉的肝点个赞好吗&#xff1f;&#xff1f;&#xff1f; Part.1 网络流基础定义 一个有向带权图 G ( V , E ) G(V,E) G(V,E) 是…...

Mybatis PLUS查询对List使用OR模糊查询

Mybatis PLUS查询对List使用OR模糊查询 1、版本2、代码3、效果 1、版本 Mybatis PLUS版本&#xff1a;3.5.7 注意&#xff1a;版本3.1.2及以下是需要return的 因当前为高版本&#xff0c;代码中已将 return 注释。 2、代码 QueryWrapper<Object> queryWrapper new Que…...

Debezium日常分享系列之:Debezium Engine

Debezium日常分享系列之&#xff1a;Debezium Engine 依赖打包项目在代码中输出消息格式消息转换消息转换谓词高级记录使用引擎属性异步引擎属性数据库模式历史属性处理故障 Debezium连接器通常通过部署到Kafka Connect服务来运行&#xff0c;并配置一个或多个连接器来监视上游…...

I.MX6U 裸机开发20. DDR3 内存知识

I.MX6U 裸机开发20. DDR3 内存知识 一、DDR3内存简介1. DDR发展历程SRAMSDRAMDDR1DDR2DDR3DDR4DDR5 2. 开发板资源3. DDR3的时间参数1. 传输速率2. tRCD3. CL 参数作用取值范围工作原理4. tRC参数原理单位与取值5. tRAS重要性及作用 二、I.MX6U MMDC 控制器1. MMDC简介&#xf…...

【R安装】VSCODE安装及R语言环境配置

目录 VSCODE下载及安装VSCODE上配置R语言环境参考 Visual Studio Code&#xff08;简称“VSCode” &#xff09;是Microsoft在2015年4月30日Build开发者大会上正式宣布一个运行于 Mac OS X、Windows和 Linux 之上的&#xff0c;针对于编写现代Web和云应用的跨平台源代码编辑器&…...

ES更新问题 Failed to close the XContentBuilder异常

问题描述 使用RestHighLevelClient对文档进行局部更新的时候报错如下&#xff1a; Suppressed: java.lang.IllegalStateException: Failed to close the XContentBuilderat org.elasticsearch.common.xcontent.XContentBuilder.close(XContentBuilder.java:1011)at org.elast…...

svn-git下载

windows&#xff1a; svn 客户端&#xff1a;-------------- TortoiseSVN 安装 下载地址&#xff1a;https://tortoisesvn.net/downloads.html, 页面里有语言包补丁的下载链接。 目前最新版为 1.11.0 下载地址&#xff1a; https://osdn.net/projects/tortoisesvn/storage/1.…...

10个Word自动化办公脚本

在日常工作和学习中&#xff0c;我们常常需要处理Word文档&#xff08;.docx&#xff09;。 Python提供了强大的库&#xff0c;如python-docx&#xff0c;使我们能够轻松地进行文档创建、编辑和格式化等操作。本文将分享10个使用Python编写的Word自动化脚本&#xff0c;帮助新…...

Paddle Inference部署推理(十八)

十八&#xff1a;Paddle Inference推理 &#xff08;C&#xff09;API详解 3. 使用 CPU 进行预测 注意&#xff1a; 在 CPU 型号允许的情况下&#xff0c;进行预测库下载或编译试尽量使用带 AVX 和 MKL 的版本 可以尝试使用 Intel 的 MKLDNN 进行 CPU 预测加速&#xff0c;默…...

Redis开发02:redis.windows-service.conf 默认配置文件解析与注解

文件位置&#xff1a;redis安装目录下的 redis.windows-service.conf &#xff0c;存放了redis服务的相关配置&#xff0c;下面列举出默认配置的含义&#xff1a; 配置项含义bind 127.0.0.1限制 Redis 只监听本地回环地址&#xff0c;意味着只能从本地连接 Redis。protected-m…...

redis大key和热key

redis中大key、热key 什么是大key大key可能产生的原因大key可能会造成什么影响如何检测大key如何优化删除大key时可能的问题删除大key的策略 热key热key可能导致的问题解决热key的方法 什么是大key 大key通常是指占用内存空间过大或包含大量元素的键值对。 数据量大&#xff…...

Dubbo 最基础的 RPC 应用(使用 ZooKeeper)

看国内的一些项目时 Dubbo 这个词经常闪现&#xff0c;一直也不以为然&#xff0c;未作搜索&#xff0c;当然也不知道它是做什么用的。直到最近阅读关于大型网站架构相关的书中反复提到 Dubbo 后&#xff0c;觉得不能再对它视而不见。Google 了一下&#xff0c;它是在阿里巴巴创…...

科技赋能:企业如何通过新技术提升竞争力的策略与实践

引言 在当今瞬息万变的商业环境中&#xff0c;科技的迅猛发展正在重新定义行业的游戏规则。无论是小型企业还是跨国巨头&#xff0c;都感受到数字化转型的迫切需求。过去&#xff0c;企业竞争力更多依赖于成本控制、资源调配或市场覆盖&#xff0c;而如今&#xff0c;新技术的引…...

从0开始深度学习(33)——循环神经网络的简洁实现

本章使用Pytorch的API实现RNN上的语言模型训练 0 导入库 import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from collections import Counter import re import math from tqdm import tqdm1 准备数据 …...

【FAQ】HarmonyOS SDK 闭源开放能力 — 公共模块

1.问题描述&#xff1a; 文档哪里能找到所有的权限查看该权限是用户级的还是系统级的。 解决方案&#xff1a; 您好&#xff0c;可以看一下下方链接是否可以解决问题&#xff1a; https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/permissions-for-all-V…...

百度 文心一言 vs 阿里 通义千问 哪个好?

背景介绍&#xff1a; 在当前的人工智能领域&#xff0c;随着大模型技术的快速发展&#xff0c;市场上涌现出了众多的大规模语言模型。然而&#xff0c;由于缺乏统一且权威的评估标准&#xff0c;很多关于这些模型能力的文章往往基于主观测试或自行设定的排行榜来评价模型性能…...

内网不出网上线cs

一:本地正向代理目标 如下&#xff0c;本地(10.211.55.2)挂好了基于 reGeorg 的 http 正向代理。代理为: Socks5 10.211.55.2 1080python2 reGeorgSocksProxy.py -l 0.0.0.0 -p 1080 -u http://10.211.55.3:8080/shiro/tunnel.jsp 二&#xff1a;虚拟机配置proxifer 我们是…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...