研0找实习【学nlp】14--BERT理解
以后做项目,一定要多调查,选用不同组合关键词多搜索!
BERT论文解读及情感分类实战_bert模型在imdb分类上的准确率已经到达了多少的水平-CSDN博客
【深度学习】-Imdb数据集情感分析之模型对比(4)- CNN-LSTM 集成模型_使用rnn和lstm训练情感分类模型,在测试集上的准确率分别是什么?-CSDN博客
NLP系列(2)文本分类(Bert)pytorch_bert文本分类-CSDN博客
语言模型BERT理解_bert-base-uncased和bert-large-uncased区别-CSDN博客
一文读懂BERT(原理篇)_bert-as-service论文里能用吗-CSDN博客
BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的自然语言处理模型,它在各种NLP任务中取得了显著的成果。下面列举一些常见的BERT模型:
BERT-base:BERT-base是最基本的BERT模型,它包含12个Transformer编码器层,总共有110M个参数。BERT-base的输入嵌入向量维度为768,隐藏层的维度也是768。
BERT-large:BERT-large相对于BERT-base来说更大,它包含24个Transformer编码器层,总共有340M个参数。BERT-large的输入嵌入向量维度和隐藏层维度都是1024。
BERT-wwm:BERT-wwm是BERT的一种改进版本,它采用了整词(Whole Word Masking)的方式进行预训练,可以更好地处理中文的分词问题。
BERT-multilingual:BERT-multilingual是一种支持多语言的BERT模型,它可以同时处理多种语言的文本。该模型的预训练任务包括了来自多个语言的大规模文本。
BERT-uncased:BERT-uncased是将英文文本中的大写字母转换为小写字母后训练的模型。这种模型适用于不区分大小写的任务。
BERT-cased:BERT-cased是保留英文文本中的大小写信息后训练的模型。这种模型适用于区分大小写的任务。
除了以上列举的几种,还有一些其他的BERT模型,如BERT-tiny、BERT-mini等,这些模型规模更小,适用于资源受限的环境或小规模任务。
需要注意的是,BERT模型是通过预训练和微调的方式使用的,预训练任务通常是掩码语言建模(Masked Language Modeling)和下一句预测(Next Sentence Prediction)。在实际应用中,可以将预训练的BERT模型微调到特定的任务上,如文本分类、命名实体识别、情感分析等。
相关文章:
研0找实习【学nlp】14--BERT理解
以后做项目,一定要多调查,选用不同组合关键词多搜索! BERT论文解读及情感分类实战_bert模型在imdb分类上的准确率已经到达了多少的水平-CSDN博客 【深度学习】-Imdb数据集情感分析之模型对比(4)- CNN-LSTM…...
mysql之基本常用的语法
mysql之基本常用的语法 1.增加数据2.删除数据3.更新/修改数据4.查询数据4.1.where子句4.2.order by4.3.limit与offset4.4.分组与having4.5.连接 5.创建表 1.增加数据 insert into 1.指定列插入 语法:insert into table_name(列名1,列名2,....,列名n) values (值1,值…...
基于Linux的patroni搭建标准
作者:Digital Observer(施嘉伟) Oracle ACE Pro: Database PostgreSQL ACE Partner 11年数据库行业经验,现主要从事数据库服务工作 拥有Oracle OCM、DB2 10.1 Fundamentals、MySQL 8.0 OCP、WebLogic 12c OCA、KCP、PCTP、PCSD、P…...
2024年第十三届”认证杯“数学中国数学建模国际赛(小美赛)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓...
Unity类银河战士恶魔城学习总结(P149 Screen Fade淡入淡出菜单)
【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址:https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了进入游戏和死亡之后的淡入淡出动画效果 UI_FadeScreen.cs 1. Animator 组件的引用 (anim) 该脚本通过 Animator 控制 UI 元…...
(四)3D视觉机器人的手眼标定(眼在手外)
内容 1.背景介绍1.1 思路T_target_to_cam求解公式求解 2.操作流程 1.背景介绍 3D视觉机器人指的是机器人通过3D相机提供的3D点云视觉信息,完成某些实际的功能。 目标是将场景信息从相机坐标系变换至机械臂坐标系中,最终是获得相机到机械臂基座的空间…...
安达发|制造业APS智能优化排产软件的四类制造模型解决方案
在制造业中,APS(高级计划和排程系统)智能优化排产软件的应用越来越广泛。它通过集成先进的算法和模型,帮助企业提高生产效率、降低成本并提升客户满意度。针对不同类型的生产需求,APS软件提供了四类制造模型解决方案&a…...
命令行使用ssh隧道连接远程mysql
本地电脑A 跳板机B 主机2.2.2.2 用户名 B ssh端口号22 登录密码bbb 远程mysql C 地址 3.3.3.3 端口号3306 用户名C 密码ccc A需要通过跳板机B才能访问C; navicat中配置ssh可以实现在A电脑上访问C 如何实现本地代码中访问C呢? # 假设本地使…...
力扣第 71 题 简化路径
一、题目描述 给定一个字符串 path,表示一个由目录名和斜杠 "/" 组成的绝对路径,请简化该路径,使其变为规范路径。 在 Unix 风格的文件系统中: 一个点 "." 表示当前目录本身;两个点 "..&q…...
使用ENSP实现OSPF
一、项目拓扑 二、项目实现 1.路由器AR1配置 进入系统试图 sys将路由器命名为R1 sysname R1关闭信息中心 undo info-center enable 进入g0/0/0接口 int g0/0/0将g0/0/0接口IP地址配置为1.1.1.1/24 ip address 1.1.1.1 24进入g0/0/1接口 int g0/0/1将g0/0/1接口IP地址配置为2…...
分布式下怎么优化处理数据,怎么代替Join
分布式下怎么优化处理数据,怎么代替Join 简单来说, 可以采用 数据冗余,有意地存储一些重复的数据,以此减少关联查询的需求 数据拆分与多次查询,将一次获取的多表数据,拆分多个单独的查询 使用数据仓库…...
51单片机快速入门之中断的应用 2024/11/23 串口中断
51单片机快速入门之中断的应用 基本函数: void T0(void) interrupt 1 using 1 { 这里放入中断后需要做的操作 } void T0(void): 这是一个函数声明,表明函数 T0 不接受任何参数,并且不返回任何值。 interrupt 1: 这是关键字和参…...
[Java]微服务配置管理
介绍 代码拆分为微服务后, 每个服务都有自己的配置文件, 而这些配置文件中有很多重复的配置, 并且配置变化后需要重启服务, 才能生效, 这样就会影响开发体验和效率 配置管理服务可以帮助我们集中管理公共的配置, 并且nacos就可以实现配置管理服务 配置共享 我们可以把微服务共…...
c/c++ 用easyx图形库写一个射击游戏
#include <graphics.h> #include <conio.h> #include <stdlib.h> #include <time.h>// 定义游戏窗口的大小 #define WINDOW_WIDTH 800 #define WINDOW_HEIGHT 600// 定义玩家和目标的尺寸 #define PLAYER_SIZE 50 #define TARGET_SIZE 20// 玩家的结构…...
Rust eyre 错误处理实战教程
在《Rust 错误处理库: thiserror 和 anyhow》中我们介绍了Rust简化处理错误策略,本文解释eyre错误处理库,并通过多个实际示例进行说明,最后于anyhow库进行对比,让你更好理解其应用场景。 eyre是一个用于 Rust 的错误处理库&#x…...
面试小札:JVM虚拟机
1. 定义与基本概念 - JVM(Java Virtual Machine)即Java虚拟机,是Java程序的运行核心。它是一个虚构出来的计算机,通过在实际的计算机上仿真模拟各种计算机功能来运行Java字节码。字节码是一种中间格式,它使得Java程序能…...
Docker扩容操作(docker总是空间不足)
Docker扩容操作(docker总是空间不足) 1、df二连,一共也就70g,总是占满93%以上。所以需要移动到其他目录上 查看docker镜像和容器存储目录的空间大小 du -sh /var/lib/docker/2、停止docker服务 systemctl stop docker3、首先创建目录并迁移 # 首先创…...
数字图像处理(4):FPGA中的定点数、浮点数
(1)定点数:小数点固定在数据的某一位置的数,可以分为定点整数和定点小数和普通定点数。定点数广泛应用于数字图像处理(图像滤波、图像缩放)和数字信号处理(如FFT、定点卷积)中。 定…...
毕昇入门学习
schemas.py 概述 这段代码主要定义了一系列基于 Pydantic 的数据模型(BaseModel),用于数据验证和序列化,通常用于构建 API(如使用 FastAPI)。这些模型涵盖了用户认证、聊天消息、知识库管理、模型配置等多…...
2411C++,学习C++提示4
结构绑定 auto [first, ...ts] std::tuple{1, 2 ,3};assert(1 first);浮点作为非类型模板参数 template<double Value> constexpr auto value Value;int main() {std::cout << value<4.2>; // prints 4.2 }template<double... Vl1s, double... Vl2s&g…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
