【机器学习】---大语言模型
引言:开启大语言模型的奇幻旅程
近年来,人工智能(AI)领域正在经历一场前所未有的技术革命,而其中最耀眼的明星莫过于大语言模型(Large Language Models, LLMs)。这些模型,犹如现代科技的语言魔法师,通过海量数据和尖端的深度学习技术训练而成,在自然语言的理解与生成上展现了无与伦比的能力。
它们不仅能生成流畅自然的文本,还在诸如代码生成、智能问答、语言翻译等领域表现出惊人的潜力。无论是为企业带来效率提升,还是助力科学研究突破瓶颈,大语言模型都以令人叹为观止的表现,深刻地改变着我们的生活。
本文将以系统且易懂的方式,深入探讨大语言模型的基本原理、广泛应用场景、技术最新进展,并带您从零开始构建和部署一个属于自己的语言模型。准备好了吗?让我们一起揭开大语言模型的神秘面纱。
第一部分:什么是大语言模型?
1. 走近大语言模型
大语言模型并非传统意义上的“语言学家”,而是通过深度学习技术训练的大规模神经网络,其核心目标是理解、生成并操控自然语言。这些模型的强大之处在于,它们能够从海量的训练数据中学习语言的结构和语义关系,从而以极高的准确度生成自然语言文本。
它们的核心技术依赖于一种名为Transformer的模型架构。Transformer 架构通过自注意力机制(Self-Attention)和多头注意力(Multi-Head Attention)等技术,能够有效捕捉语言中各个词汇之间的复杂关系,从而实现精准的上下文理解。
2. Transformer:大语言模型的幕后英雄
Transformer架构是大语言模型的灵魂,其核心机制主要包括以下三部分:
-
自注意力机制(Self-Attention)
自注意力机制是 Transformer 的点睛之笔。通过这种机制,模型可以在处理句子时找到其中词汇间的依赖关系。例如,在“猫追老鼠”这句话中,自注意力机制可以帮助模型理解“猫”是动作的主语,而“老鼠”是动作的对象。 -
多头注意力机制(Multi-Head Attention)
多头注意力将注意力机制扩展到多个维度,从而捕捉语言中更丰富的语义特征。它使得模型可以同时关注句子的不同部分,比如语法结构和语义关联。 -
位置编码(Positional Encoding)
由于 Transformer 不像传统 RNN 那样依赖序列信息,它通过位置编码为每个词汇引入位置信息,确保模型能理解句子的顺序和结构。
以下是一段实现自注意力机制的代码,为您展示其背后的基本原理:
import torch
import torch.nn as nnclass SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert self.head_dim * heads == embed_size, "Embedding size must be divisible by heads"self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(embed_size, embed_size)def forward(self, values, keys, query, mask):N = query.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]values = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])if mask is not None:energy = energy.masked_fill(mask == 0, float("-1e20"))attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)return self.fc_out(out)
3. 模型训练的核心要素
要构建一个大语言模型,仅依赖强大的算法是不够的。以下是训练过程中不可或缺的三个关键要素:
-
海量语料库
模型需要从海量数据中学习语言的多样性和复杂性。常用的数据来源包括 Common Crawl、Wikipedia 等。 -
优化算法
如 AdamW,这是一种适合深度学习的优化算法,可以显著提高训练效率。 -
强大计算资源
通常需要数百甚至数千块 GPU 或 TPU 才能完成大规模模型的训练。
第二部分:大语言模型的应用场景
大语言模型的应用范围广阔,无论是文本生成、智能问答,还是代码生成、语言翻译,它都扮演着重要角色。以下是几个代表性的应用领域:
1. 文本生成:创作无界限
大语言模型能够生成流畅、自然的文本,适用于内容创作、新闻写作和文案生成等场景。例如,输入简单的主题,模型即可输出高质量的文章。
2. 问答系统:打造智能助手
通过微调(Fine-Tuning),大语言模型可以搭建出高效的问答系统,广泛应用于智能客服和信息检索。
3. 编程助手:程序员的得力帮手
大语言模型能够辅助程序员完成代码补全、错误修复和优化任务。例如,OpenAI 的 Codex 模型已被集成到多种 IDE 中,提升开发效率。
以下是一段调用 OpenAI GPT-4 生成代码的示例:
import openaiopenai.api_key = "your-api-key"response = openai.Completion.create(engine="gpt-4",prompt="Write a Python function to calculate factorial.",max_tokens=100
)print(response.choices[0].text.strip())
4. 多语言翻译:跨文化桥梁
借助大语言模型的强大能力,可以实现高质量的多语言翻译,为跨文化交流和国际化业务提供技术支持。
第三部分:如何构建和部署一个大语言模型?
1. 数据准备
构建语言模型的第一步是准备一个丰富的语料库,如维基百科或 Common Crawl 数据。
2. 模型训练
使用开源工具(如 PyTorch 和 Hugging Face Transformers)进行训练。以下是一段训练语言模型的代码:
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
from datasets import load_datasetdataset = load_dataset("wikitext", "wikitext-2-raw-v1")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")def tokenize_function(examples):return tokenizer(examples["text"], padding="max_length", truncation=True)tokenized_datasets = dataset.map(tokenize_function, batched=True)training_args = TrainingArguments(output_dir="./results",per_device_train_batch_size=2,num_train_epochs=3,save_steps=10_000,save_total_limit=2,
)trainer = Trainer(model=model,args=training_args,train_dataset=tokenized_datasets["train"],
)trainer.train()
3. 部署模型
通过 RESTful API 或云平台(如 AWS、Azure)部署模型,让其随时随地提供服务。
展望未来:LLMs 的发展趋势
大语言模型的未来令人充满期待。研究人员正致力于开发更高效、更轻量的模型(如 Small Language Models),并探索多模态(语言、图像、音频等)融合的可能性。与此同时,增强模型的可解释性和透明度也是一项重要课题。
结语
大语言模型的诞生,是人工智能领域的重要里程碑。无论您是技术专家还是普通用户,大语言模型都将在未来以更智能、更便捷的方式为您的生活服务。行动起来,探索 LLM 的奇妙世界吧!
相关文章:
【机器学习】---大语言模型
引言:开启大语言模型的奇幻旅程 近年来,人工智能(AI)领域正在经历一场前所未有的技术革命,而其中最耀眼的明星莫过于大语言模型(Large Language Models, LLMs)。这些模型,犹如现代科…...

挑战用React封装100个组件【002】
项目地址 https://github.com/hismeyy/react-component-100 组件描述 组件适用于需要展示图文信息的场景,比如产品介绍、用户卡片或任何带有标题、描述和可选图片的内容展示 样式展示 代码展示 InfoCard.tsx import ./InfoCard.cssinterface InfoCardProps {t…...

MarkDown-插入图片-图片url地址的生成获取方法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、url地址是什么二、如何获取图片的url地址1.了解图床2.使用图床获取图片URL地址2.1进入网站后,点击右下角“Select Image.”按钮,即可…...

插值、拟合和回归分析的相关知识
目录 0 序言 1 分段线性插值 2 多项式插值 3 样条插值 4 最小二乘拟合 5 多元线性回归 0 序言 在生产实践和科学研究中,常常有这些问题: 插值问题:由实验或测量得到变量间的一批离散样点,要求得到变量之间的函数关系或得到样点之外的…...

【小白学机器学习42】进行多次抽样,样本的分布参数和总体的分布参数的关系
目录 1 进行多次抽样,样本的分布参数和总体的分布参数的关系 2 样本容量越大,多次抽样的样本的分布参数和总体的分布参数的关系 3 随着样本容量增大,多次抽样均值的 平均值,方差的变化 4 随着样本容量增大,多次抽…...
链动星海 质引未来|中信银行加码科技金融 “接力式”服务助力“新质生产力”释放
11月26日,第二届中国国际供应链促进博览会(以下简称链博会)在北京中国国际展览中心开幕。中信集团以“链动星海 质引未来”为主题,亮相先进制造链展区。此次布展由中信金控主办、中信银行承办,携手中信证券、中信建投证…...
黑马2024AI+JavaWeb开发入门Day02-JS-VUE飞书作业
视频地址:哔哩哔哩 讲义作业飞书地址:飞书 一、作业1 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge">&l…...

云计算基础-期末复习
第一章:云计算概论 一、云计算的定义与特征 1. 定义: 云计算是一种通过网络以按需、可扩展的方式获取计算资源和服务的模式。它将计算资源视为一种公用事业,用户可以根据需求动态获取和释放资源,而无需了解底层基础设施的细节。…...

Java GET请求 请求参数在Body中使用Json格式传参
业务需要调个三方接口 使用GET请求方式 但是!请求参数不在Query中,竟然在Body中,使用Json格式传参 在API调试工具里面可以调通 在java代码里,死活调不通 网上搜了搜,找到一个靠谱的,记录一下 import o…...

AI数据分析工具(一)
Looker Studio(谷歌)-免费 优点 免费使用:对于中小型企业和个人用户来说,没有任何费用压力,可以免费享受到数据可视化和报表创建的功能。与Google服务集成:特别适合使用Google产品生态的企业,…...

go结构体匿名“继承“方法冲突时继承优先顺序
在 Go 语言中,匿名字段(也称为嵌入字段)可以用来实现继承的效果。当你在一个结构体中匿名嵌入另一个结构体时,嵌入结构体的方法会被提升到外部结构体中。这意味着你可以直接通过外部结构体调用嵌入结构体的方法。 如果多个嵌入结…...
【049】基于51单片机语音录放【Proteus仿真+Keil程序+报告+原理图】
☆、设计硬件组成:51单片机最小系统ISD4004语音芯片LM386音频放大器喇叭LCD1602液晶显示按键控制LED灯。 1、本设计采用STC89C51/52、AT89C51/52、AT89S51/52作为主控芯片,LCD1602液晶显示屏实时显示; 2、系统具有两种模式:录音…...

《软件项目管理》期末-复习题及参考答案
(1)赶工一个任务时,你应该关注( C ) A. 尽可能多的任务 B. 非关键任务 C. 加速执行关键路径上的任务 D. 通过成本最低化加速执行任务 (2)下列哪个不是项目管理计划的一部分?&#x…...
milvus 通俗易懂原理
向量值如何生成的 Milvus 是一个开源的向量数据库,专门用于处理高维向量的存储、搜索和分析。向量值本身通常来自于某些机器学习或深度学习模型的输出,尤其是在自然语言处理(NLP)、计算机视觉(CV)、推荐系…...
什么是撞库、拖库和洗库?
“撞库”是黑客通过收集互联网已泄露的用户和密码信息,生成对应的字典表,尝试批量登陆其他网站后,得到一系列可以登录的用户。 很多用户在不同网站使用的是相同的帐号密码,因此黑客可以通过获取用户在A网站的账户从而尝试登录B网…...

安卓-碎片的使用入门
1.碎片(Fragment)是什么 Fragment是依赖于Activity的,不能独立存在的,是Activity界面中的一部分,可理解为模块化的Activity,它能让程序更加合理和充分地利用大屏幕的空间,因而在平板上应用得非常广泛. Fragment不能独立存在,必须…...

华为IPD流程学习之——深入解读123页华为IPD流程体系设计方法论PPT
该方案全面介绍了华为IPD流程体系设计方法论,包括流程体系建设的背景、理念、架构、核心特征、构建模型、与组织和战略的关系、运营机制、数字化转型以及流程管理组织等内容,旨在为企业提供一套系统的流程体系建设指导,以提升运营效率、质量和…...

DriveMLLM:一个专为自动驾驶空间理解任务设计的大规模基准数据集
2024-11-20, 由武汉大学、中国科学院自动化研究所、悉尼科技大学、牛津大学等合创建了DriveMLLM数据集,该数据集是自动驾驶领域首个专为评估多模态大型语言模型(MLLMs)空间理解能力而设计的基准,对于推动自动驾驶技术的…...

高效处理 iOS 应用中的大规模礼物数据:以直播项目为例(1-礼物池)
引言 在现代iOS应用开发中,处理大规模数据是一个常见的挑战。尤其实在直播项目中,礼物面板作为展示用户互动的重要部分,通常需要实时显示海量的礼物数据。这些数据不仅涉及到不同的区域、主播的动态差异,还需要保证高效的加载与渲…...
python的函数与递归
需求: 编写一个函数,计算斐波那契数列的第 N 项,并使用递归实现。 为了计算斐波那契数列的第 N 项,可以使用递归方法。斐波那契数列的定义是: F(0) 0 F(1) 1 对于 n > 2,F(n) F(n-1) F(n-2)…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...