当前位置: 首页 > news >正文

数据结构 (18)数的定义与基本术语

前言

       数据结构是计算机科学中的一个核心概念,它描述了数据元素之间的关系以及这些元素在计算机中的存储方式。

一、数的定义

       在计算机科学中,“数”通常指的是树形数据结构,它是一种非线性的数据结构,由节点(或称为元素)和连接这些节点的边组成。树形结构有一个特殊的节点称为根节点,其余节点则可以划分为若干个不相交的子集,每个子集也是一个树形结构,称为根节点的子树。

二、基本术语

  1. 节点(Node)
    • 树形结构的基本单位,它包含数据部分和指向其子节点的指针(或链接)。
    • 在某些情况下,节点也被称为元素、顶点或记录。
  2. 根节点(Root Node)
    • 树形结构的起始节点,没有父节点。
    • 在树中,所有其他节点都是根节点的后代。
  3. 子节点(Child Node)
    • 一个节点的直接后继节点,通过边与父节点相连。
    • 一个节点可以有多个子节点。
  4. 父节点(Parent Node)
    • 一个节点的直接前驱节点,通过边与子节点相连。
    • 除根节点外,每个节点都有一个父节点。
  5. 兄弟节点(Sibling Nodes)
    • 具有相同父节点的节点。
  6. 叶子节点(Leaf Node)
    • 没有子节点的节点。
    • 在树中,叶子节点位于最底层。
  7. 树的深度(Depth of Tree)
    • 树中节点的最大层次数(从根节点开始计算)。
    • 树的深度也称为树的高度。
  8. 树的度(Degree of Tree)
    • 树中节点的最大子节点数。
    • 需要注意的是,树的度与节点的度是两个不同的概念。节点的度是指该节点的子节点数。
  9. 森林(Forest)
    • 零个或多个不相交的树组成的集合。
    • 森林可以看作是没有根节点的特殊树形结构。
  10. 有序树(Ordered Tree)
    • 树中节点的子节点是有序的,即每个节点的子节点按一定顺序排列。
    • 在有序树中,子节点的位置是重要的。
  11. 无序树(Unordered Tree)
    • 树中节点的子节点是无序的,即每个节点的子节点没有特定的排列顺序。
    • 在无序树中,子节点的位置是不重要的。

三、树的种类

     根据树的结构特点,可以将树分为多种类型:

  1. 二叉树(Binary Tree)
    • 每个节点最多有两个子节点,分别称为左子节点和右子节点。
    • 二叉树是树形结构中最常见和最重要的一种。
  2. 平衡二叉树(Balanced Binary Tree)
    • 一种特殊的二叉树,其中任何节点的两个子树的高度差不超过1。
    • 平衡二叉树通常用于实现高效的搜索和排序操作。
  3. B树(B-Tree)
    • 一种自平衡的树,能够保持数据有序,允许搜索、顺序访问、插入和删除等操作在对数时间内完成。
    • B树广泛用于数据库和文件系统的索引结构中。
  4. 红黑树(Red-Black Tree)
    • 一种自平衡的二叉搜索树,其中每个节点都存储一个额外的位来表示节点的颜色(红色或黑色)。
    • 红黑树通过颜色的约束来保持树的平衡性,从而确保搜索、插入和删除操作的高效性。
  5. 堆(Heap)
    • 一种特殊的完全二叉树,其中每个节点的值都大于或等于其子节点的值(最大堆)或小于或等于其子节点的值(最小堆)。
    • 堆通常用于实现优先队列和堆排序等操作。
  6. Trie树(Trie Tree)
    • 一种用于存储字符串集合的树形数据结构,其中每个节点表示字符串的一个字符。
    • Trie树通常用于实现高效的字符串搜索和前缀匹配操作。

四、树的操作

     在树形数据结构中,常见的操作包括:

  1. 搜索(Search)
    • 在树中查找具有特定值的节点。
    • 搜索操作的时间复杂度取决于树的结构和搜索算法。
  2. 插入(Insert)
    • 在树中添加一个新的节点。
    • 插入操作需要保持树的平衡性和有序性(如果适用)。
  3. 删除(Delete)
    • 从树中移除一个节点。
    • 删除操作需要保持树的平衡性和有序性(如果适用),并处理可能的子树合并或重新平衡。
  4. 遍历(Traversal)
    • 按照一定顺序访问树中的每个节点。
    • 常见的遍历方法包括前序遍历、中序遍历和后序遍历(对于二叉树)以及层次遍历(按层次从上到下、从左到右访问节点)。

总结

       综上所述,数据结构中的“数”(树形结构)是一种重要的非线性数据结构,具有广泛的应用场景和丰富的操作。通过掌握树的基本术语和种类以及常见的操作方法,可以更好地理解和应用树形数据结构来解决实际问题。

 结语   

没有无义务的权利

也没有无权利的义务

!!!

相关文章:

数据结构 (18)数的定义与基本术语

前言 数据结构是计算机科学中的一个核心概念,它描述了数据元素之间的关系以及这些元素在计算机中的存储方式。 一、数的定义 在计算机科学中,“数”通常指的是树形数据结构,它是一种非线性的数据结构,由节点(或称为元素…...

Flink的双流join理解

如何保证Flink双流Join准确性和及时性、除了窗口join还存在哪些实现方式、究竟如何回答才能完全打动面试官呢。。你将在文中找到答案。 1 引子 1.1 数据库SQL中的JOIN 我们先来看看数据库SQL中的JOIN操作。如下所示的订单查询SQL,通过将订单表的id和订单详情表ord…...

《使用Python进行数据挖掘:理论、应用与案例研究》

嘿,今天我要给你们介绍一本使用Python进行数据挖掘的好书。这本书是由吴迪博士撰写的,他是雷曼学院商学院的助理教授,也是数据科学的实战派。 在这个时代,数据多得让人眼花缭乱,要从中找出有用的信息,那可不…...

Go语言技巧:快速统一字符串中的换行符,解决跨平台问题

统一字符串中的 Windows \r\n 换行符 — Go语言实现 在编程中,尤其是处理跨平台的文本数据时,换行符的处理是一个常见的问题。Windows 系统使用 \r\n 作为换行符,而 Unix-like 系统(如 Linux 和 macOS)使用 \n。在 Go…...

算法训练营day20(二叉树06:最大二叉树,合并二叉树,搜索二叉树,验证搜索二叉树)

第六章 二叉树 part06 今日内容 ● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树 详细布置 654.最大二叉树 又是构造二叉树,昨天大家刚刚做完 中序后序确定二叉树,今天做这个 应该会容易一些, 先看视…...

Leetcode(区间合并习题思路总结,持续更新。。。)

讲解题目:合并区间 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间, 并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。示例 1:输入&a…...

『python爬虫』使用docling 将pdf或html网页转为MD (保姆级图文)

目录 预览效果安装下载模型测试代码总结 欢迎关注 『python爬虫』 专栏,持续更新中 欢迎关注 『python爬虫』 专栏,持续更新中 预览效果 支持转化pdf的表格 安装 Docling 本身是专注于文档转换的工具,通常用于将文件(如 PDF&…...

elasticsearch现有集群扩展节点

原文地址:elasticsearch现有集群扩展节点 – 无敌牛 欢迎参观我的个人博客:无敌牛 – 技术/著作/典籍/分享等 给现有的 elasticsearch 集群扩展节点比较容易,已有的集群不需要做任何修改,也不用对服务做任何处理,只需…...

力扣162:寻找峰值

峰值元素是指其值严格大于左右相邻值的元素。 给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。 你可以假设 nums[-1] nums[n] -∞ 。 你必须实现时间复杂度为 O(…...

Kafka-Connect

一、概述 Kafka Connect是一个在Apache Kafka和其他系统之间可扩展且可靠地流式传输数据的工具。细心的你会发现,我们编写的producer、consumer都有很多重复的代码,KafkaConnect就是将这些通用的api进行了封装。让我们可以只关心业务部分(数…...

递归、搜索与回溯算法 - 3 ( floodfill 记忆化搜素 9000 字详解 )

一:floodfill 算法 1.1 图像渲染 题目链接:图像渲染 class Solution {// 首先先定义四个方向的向量int[] dx {0, 0, 1, -1};int[] dy {1, -1, 0, 0};// 接着用 m 记录行数,n 记录列数,prev 记录 (sr, sc) 位置的…...

YOLOv9改进,YOLOv9引入CAS-ViT(卷积加自注意力视觉变压器)中AdditiveBlock模块,二次创新RepNCSPELAN4结构

摘要 CAS-ViT 是一种为高效移动应用设计的视觉Transformer。模型通过结合卷积操作与加性自注意机制,在保持高性能的同时显著减少计算开销,适合资源受限的设备如手机。其核心组件 AdditiveBlock 通过多维度信息交互和简化的加性相似函数,实现了高效的上下文信息整合,避免了…...

HDLCPPP原理与配置

前言: 广域网中经常会使用串行链路来提供远距离的数据传输,高级数据链路控制HDLC( High-Level Data Link Control )和点对点协议PPP( Point to Point Protocol)是两种典型的串口封装协议。 HDLC协议: 原理…...

react + vite 中的环境变量怎么获取

一、Vite 环境变量基础 创建一个.env文件,Vite 定义的环境变量需要以VITE_开头。 VITE_API_URL "http://localhost:3000/api" 生产模式创建.env.production。 VITE_API_URL "https://production-api-url.com/api" 二、在 React 组件中获…...

知识蒸馏中有哪些经验| 目标检测 |mobile-yolov5-pruning-distillation项目中剪枝知识分析

项目地址:https://github.com/Syencil/mobile-yolov5-pruning-distillation 项目时间:2022年 mobile-yolov5-pruning-distillation是一个以yolov5改进为主的开源项目,主要包含3中改进方向:更改backbone、模型剪枝、知识蒸馏。这里…...

Oracle 19c RAC单节点停机维护硬件

背景 RAC 环境下一台主机硬件光纤卡不定时重启,造成链路会间断几秒,期间数据库会话响应时间随之变长,该光纤卡在硬件厂商的建议下,决定停机更换备件,为保证生产影响最小,决定停掉该节点,另外节…...

Linux系统 进程

Linux系统 进程 进程私有地址空间用户模式和内核模式上下文切换 进程控制系统调用错误处理进程控制函数获取进程 ID创建和终止进程回收子进程让进程休眠加载并运行程序 进程 异常是允许操作系统内核提供进程(process)概念的基本构造块,进程是…...

机载视频流回传+编解码方案

无线网络,低带宽场景。不能直接转发ROS raw image(10MB/s),而要压缩(编码)后再传输。可以用rtsp的udp传输或者直接传输话题,压缩方法有theora(ROS image_transport默认支持&#xff…...

Ubuntu 20.04 Server版连接Wifi

前言 有时候没有网线口插网线或者摆放电脑位置不够时,需要用Wifi联网。以下记录Wifi联网过程。 环境:Ubuntu 20.04 Server版,无UI界面 以下操作均为root用户,如果是普通用户,请切换到root用户,或者在需要权…...

【VRChat 改模】开发环境搭建:VCC、VRChat SDK、Unity 等环境配置

一、配置 Unity 相关 1.下载 UnityHub 下载地址:https://unity.com/download 安装打开后如图所示: 2.下载 VRChat 官方推荐版本的 Unity 跳转界面(VRChat 官方推荐页面):https://creators.vrchat.com/sdk/upgrade/…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...