ADAM优化算法与学习率调度器:深度学习中的关键工具
深度学习模型的训练效果离不开优化算法和学习率的选择。ADAM(Adaptive Moment Estimation)作为深度学习领域中广泛应用的优化算法之一,以其高效性和鲁棒性成为许多任务的默认选择。而学习率调度器则是优化算法的“助推器”,帮助训练过程达到更好的收敛性。本文将深入剖析ADAM算法的核心原理、优劣势以及常见的学习率调度方法,提供实用性强的技术指导。
一、优化算法基础与ADAM算法简介
1.1 优化算法在深度学习中的作用
在深度学习中,优化算法的目标是通过不断调整模型的参数(如权重和偏置),使得损失函数的值趋于最小化,从而提升模型的表现能力。常见的优化算法包括:
- 梯度下降算法(GD):基于全部训练数据计算梯度。
- 随机梯度下降算法(SGD):每次迭代仅使用一个数据点计算梯度。
- 动量梯度下降(Momentum):加入动量项以加速收敛。
- RMSProp:使用指数加权移动平均对梯度平方进行调整。
而ADAM则是对这些方法的改进与综合。
1.2 ADAM算法的核心思想
ADAM结合了Momentum和RMSProp的优点,通过一阶和二阶矩的自适应估计来动态调整学习率,从而使优化过程更加高效和鲁棒。其核心步骤包括以下几点:
-
一阶矩估计(动量项): 对梯度取指数加权平均,记录梯度的平均方向,缓解震荡问题。
-
二阶矩估计(平方梯度): 记录梯度平方的指数加权平均,用于自适应调整学习率,避免梯度过大或过小。
-
偏差修正: 对一阶和二阶矩进行偏差校正,消除初始阶段的估计偏差。
ADAM的更新公式如下:
其中:
- mt:梯度的一阶矩估计。
- vt:梯度的二阶矩估计。
- α:学习率。
- β1,β2:动量超参数,分别控制一阶和二阶矩的更新速率。
二、ADAM算法的优点与局限性
2.1 ADAM的优点
-
自适应学习率: ADAM会根据每个参数的历史梯度动态调整学习率,避免了手动调参的麻烦。
-
快速收敛: 在早期训练阶段,ADAM表现出较快的收敛速度,适合处理大型数据集和高维参数空间。
-
鲁棒性强: 能够在不稳定的损失函数曲面上表现良好,适用于稀疏梯度的情况(如NLP任务)。
-
支持非凸优化: ADAM对非凸优化问题有较好的适应能力,适合深度学习的复杂模型。
2.2 ADAM的局限性
-
泛化性能欠佳: 尽管ADAM在训练集上表现良好,但可能导致模型在验证集或测试集上过拟合。
-
学习率依赖问题: 尽管ADAM是自适应的,但初始学习率的选择仍然会显著影响最终性能。
-
未必全局收敛: 在某些特定情况下,ADAM可能无法收敛到全局最优解。
针对这些局限性,许多变种算法被提出,例如AMSGrad和AdaBound,它们通过改进二阶矩估计或收敛性约束来缓解问题。
2.3 ADAM算法的使用实例
我们以一个简单的二分类任务(如MNIST数据集的0和1分类)为例,展示如何在PyTorch中使用ADAM算法完成训练。
数据准备与模型定义
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# 数据预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])# 加载MNIST数据集(仅选取数字0和1)
train_data = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_data.data = train_data.data[(train_data.targets == 0) | (train_data.targets == 1)]
train_data.targets = train_data.targets[(train_data.targets == 0) | (train_data.targets == 1)]train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)# 简单的全连接网络
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc = nn.Sequential(nn.Flatten(),nn.Linear(28*28, 128),nn.ReLU(),nn.Linear(128, 1),nn.Sigmoid())def forward(self, x):return self.fc(x)model = SimpleNN()
使用ADAM优化算法
# 定义损失函数和ADAM优化器
criterion = nn.BCELoss() # 二分类交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)# 模型训练
for epoch in range(10): # 训练10个epochfor inputs, targets in train_loader:# 将目标转换为floattargets = targets.float().view(-1, 1)# 前向传播outputs = model(inputs)loss = criterion(outputs, targets)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")
三、学习率调度器的作用与常见策略
3.1 学习率对训练的影响
学习率决定了模型参数在每次迭代中更新的步长:
- 学习率过大可能导致参数震荡甚至无法收敛。
- 学习率过小则可能导致收敛速度慢,甚至陷入局部最优。
学习率调度器通过动态调整学习率,使训练过程既能快速收敛,又能在后期稳定优化。
3.2 常见的学习率调度方法
固定衰减(Step Decay): 每隔一定的迭代次数,将学习率按固定比例缩小。例如:
-
优点:简单直观,适合收敛较快的任务。
指数衰减(Exponential Decay): 学习率随时间指数级减少:
-
能在训练后期实现更平滑的更新。
余弦退火(Cosine Annealing): 学习率按照余弦函数变化:
-
适合周期性训练任务,例如图像分类。
学习率重启(Warm Restarts): 在余弦退火基础上,每隔一段时间重置学习率,帮助模型跳出局部最优。
基于性能的调度: 动态监控验证集的损失或准确率,当性能指标不再提升时降低学习率。
线性热身(Linear Warmup): 在训练初期,逐渐增大学习率到目标值,适合大批量训练场景。
四、ADAM与学习率调度的结合实践
在实际训练中,ADAM算法与学习率调度器的结合是提升模型效果的重要手段。以下是一些结合实践的建议:
4.1 配合学习率调度器
-
训练前期快速收敛: 使用线性热身结合ADAM,使模型快速适应优化过程。
-
中后期精细调整: 在验证性能停滞时,引入余弦退火或性能监控调度器,降低学习率以细化收敛。
4.2 不同任务的参数调整
- 对于稀疏梯度任务,如文本分类,增大β2值(如0.99)可以稳定训练。
- 对于图像生成任务,适当减小ϵ,可以提高优化精度。
五、总结
ADAM算法作为深度学习优化中的重要工具,以其高效性和自适应性深受欢迎,而学习率调度器则通过动态调整学习率进一步提高了优化效果。两者的结合为解决大规模深度学习任务提供了强大支持。然而,在实际应用中,不同任务对优化算法和学习率调度的需求各不相同,合理选择和调优是提升模型性能的关键。
通过深入理解ADAM的原理与局限性,并结合学习率调度的多种策略,开发者能够更好地应对训练过程中的挑战,实现模型的高效优化。
相关文章:

ADAM优化算法与学习率调度器:深度学习中的关键工具
深度学习模型的训练效果离不开优化算法和学习率的选择。ADAM(Adaptive Moment Estimation)作为深度学习领域中广泛应用的优化算法之一,以其高效性和鲁棒性成为许多任务的默认选择。而学习率调度器则是优化算法的“助推器”,帮助训…...
岛屿数量C++11新特性
每日一题 200. 岛屿数量 class Solution {//使用深度的优先搜索来搜索岛屿图//遍历整个图片 当char数组的值为1时开始从这个点开始往外扩散搜索//注意处理边界 图不是正方形 public:int ans;int d[4][2] {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};int N;int M;void dfs(vector<…...

Git 快速入门:全面了解与安装步骤
Git 快速入门:全面了解与安装步骤 一、关于Git 1.1 简介 Git 是一个开源的分布式版本控制系统,由 Linus Torvalds 于 2005 年创建,最初是为了更好地管理 Linux 内核开发而设计。 Git用于跟踪计算机文件的变化,特别是源代码文件…...

基于域自适应的双光融合
目录 引言DAF-Net编码器-解码器分支编码器部分融合层解码器部分 域自适应层概述多核最大均值差异(MK-MMD)第一阶段:编码器-解码器分支训练训练过程损失函数 第二阶段:融合层训练训练过程损失函数 实验与结果总结 文章声明…...
迭代器模式 (Iterator Pattern)
文章目录 迭代器模式 (Iterator Pattern)原理优点缺点示例代码场景描述1. 定义迭代器接口2. 定义集合接口3. 实现具体集合类4. 客户端代码输出结果 UML 类图使用场景优化与扩展小结 迭代器模式 (Iterator Pattern) 迭代器模式是一种 行为型设计模式,用于顺序访问集…...

039集——渐变色之:CAD中画彩虹()(CAD—C#二次开发入门)
(来左边儿 跟我一起画个龙,在你右边儿 画一道彩虹 ~~~~~~~~~~~ ) 效果如下: namespace AcTools {public class Class1{public Wform.Timer timer;//定时器需建在类下面public static DateTime startTime;[CommandM…...

如何将 GitHub 私有仓库(private)转换为公共仓库(public)
文章目录 如何将 GitHub 私有仓库转换为公共仓库步骤 1: 登录 GitHub步骤 2: 导航到目标仓库步骤 3: 访问仓库设置步骤 4: 更改仓库可见性步骤 5: 确认更改步骤 6: 验证更改注意事项 如何将 GitHub 私有仓库转换为公共仓库 在软件开发领域,GitHub 是一个广受欢迎的…...

C++11 右值引用
目录 左值 右值 左值引用与右值引用比较 左值引用总结: 右值引用总结: 左值引用的使用场景: 引用传参和做返回值都可以提高效率(减少拷贝) 左值引用的短板: 右值引用和移动语义解决上述问题: 下面就是有移动…...
WPS表格学习计划与策略
一、学习目标 掌握WPS表格的基本操作:包括新建、打开、保存工作簿,单元格的编辑与格式化,数据的输入与验证等。熟练运用WPS表格的数据处理功能:包括数据排序、筛选、分类汇总,以及使用公式和函数进行计算和分析。学会制作图表与数据可视化:掌握不同类型图表(如柱状图、折…...
Android 引入 proto 项目及使用方法
Proto(Protocol Buffers)是Google开发的一种语言无关、平台无关的序列化结构数据的方法,它类似于JSON和XML,但相对于XML而言更小,相对于JSON而言解析更快,支持多语言。以下是将Proto引入Android项目的方法及…...
VSOMEIP主要流程的时序
请求服务: client应用: application_impl::request_service routing_manager_client::request_service (老版本是routing_manager_proxy) routing_manager_client::send_request_services protocol::request_service_command its_command; // 创建…...
右值引用和移动语义:
C 右值引用和移动语义详解 在 C 的发展历程中,右值引用和移动语义的引入带来了显著的性能提升和编程灵活性。本文将深入探讨右值引用和移动语义的概念、用法以及重要性。 一、引言 C 作为一门高效的编程语言,一直在不断演进以满足现代软件编程的需求。…...

经纬高LLA转地心地固ECEF坐标,公式,代码
经纬高转地心地固的目的 坐标系转换是gis或者slam系统常见操作。GNSS获取的一般是经纬高,经纬高在slam系统里无法应用,slam系统一般是xyz互相垂直的笛卡尔坐标系,所以需要把GNSS的经纬高转到直角坐标系地心地固ECEF或者高斯投影GKP。 划重点…...

VUE前端实现天爱滑块验证码--详细教程
第一步: Git地址:tianai-captcha-demo: 滑块验证码demo 找到目录 src/main/resources/static,拷贝 static 并改名为 tac 即可。 第二步: 将改为 tac 的文件,放进项目根目录中,如下图: 第三步࿱…...
【链表】【删除节点】【刷题笔记】【灵神题单】
237.删除链表的节点 链表删除节点的本质是不用删除,只需要操作指针,跳过需要删除的节点,指向下下一个节点即可! 删除某个节点,但是不知道这个节点的前一个节点,也不知道头节点!摘自力扣评论区…...

springboot339javaweb的新能源充电系统pf(论文+源码)_kaic
毕 业 设 计(论 文) 题目:新能源充电系统的设计与实现 摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解…...

【嵌入式——QT】QT制作安装包
第一步 QT程序写好之后,编译release版本 第二步 拿到release生成的.exe文件 第三步 新建文件夹deploy 第四步 将.exe文件复制到deploy目录下 第五步 在该目录下输入cmd指令,回车 第六步 在打开的命令窗口下输入 windeployqt TegNetCom_1.0.…...
python的文件操作练习
文件操作:成绩统计 有一个文件grades.txt,文件内容是每行一个学生的成绩(格式:姓名,成绩)。要求: 读取文件内容,统计所有学生的平均成绩; 将不及格(<60分)…...

jQuery九宫格抽奖,php处理抽奖信息
功能介绍 jQuery九宫格抽奖是一种基于jQuery库的前端抽奖效果。通过九宫格的形式展示抽奖项,用户点击抽奖按钮后,九宫格开始旋转,最终停在一个随机位置上,此位置对应的抽奖项为用户的中奖结果。 本文实现九宫格的步骤为…...

2024年一级建造师考试成绩,即将公布!
一级建造师考试成绩一般在考试结束后3个月左右的时间公布! 根据官方通知,重庆、江苏、青海、江西、云南、湖南、福建、北京、山西、黑龙江等地在今年一建报名通知里提到:2024年一级建造师考试成绩预计于2024年12月上旬公布。考生可在这个时间…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...

《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...