当前位置: 首页 > news >正文

数据结构基础之《(9)—归并排序》

一、什么是归并排序

1、整体是递归,左边排好序+右边排好序+merge让整体有序
2、让其整体有序的过程里用了排外序方法
3、利用master公式来求解时间复杂度
4、当然可以用非递归实现

二、归并排序说明

1、首先有一个f函数
void f(arr, L, R)
说明:在arr上,从L到R范围上让它变成有序的

2、递归调用

(1)先f(L, M)之间有序
(2)f(M+1, R)之间有序
(3)变成整体有序

左边是2、3、5,右边是0,5,6
准备一个一样长的辅助空间,然后左指针指向2,右指针指向0,谁小拷贝谁
然后右边的指针往后移,再次比较2和5,谁小拷贝谁,以此类推

(4)整体有序后,再把这一块空间刷回去

三、代码

package class03;public class Code01_MergeSort {/*** 变成整体有序* @param arr* @param L 数组下标* @param M 数组下标* @param R 数组下标*/public static void merge(int[] arr, int L, int M, int R) {int [] help = new int[R - L + 1];int i = 0;int p1 = L;int p2 = M + 1;while (p1 <= M && p2 <= R) {help[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];}//要么p1越界了,要么p2越界了//看左边小于等于Mwhile (p1 <= M) {help[i++] = arr[p1++];}//还是右边小于等于Rwhile (p2 <= R) {help[i++] = arr[p2++];}for (i = 0; i < help.length; i++) {arr[L + i] = help[i];}}/*** 递归方法实现* arr[L...R]范围上,变成有序* @param arr*/public static void mergeSort1(int[] arr) {if (arr == null || arr.length < 2) {return;}process(arr, 0, arr.length - 1);}public static void process(int[] arr, int L, int R) {if (L == R) { // base casereturn;}int mid = L + ((R - L) >> 1);process(arr, L, mid);process(arr, mid + 1, R);merge(arr, L, mid, R);}/*** 非递归方法实现* @param arr*/public static void mergeSort2(int[] arr) {if (arr == null || arr.length < 2) {return;}int N = arr.length;int mergeSize = 1;while (mergeSize < N) {int L = 0;while (L < N) {int M = L + mergeSize - 1;if (M >= N) {break;}int R = Math.min(M + mergeSize, N - 1);merge(arr, L, M, R);L = R + 1;}if (mergeSize > N / 2) { //防止溢出break;}mergeSize <<= 1; //左移后赋值,相当于乘2后赋值}}public static void main(String[] args) {int[] aaa = {99, 100, 50, 70, 88, 10, 9, 35, 1, 98};int[] bbb = {99, 100, 50, 70, 88, 10, 9, 35, 1, 98};mergeSort1(aaa);for (int i: aaa) {System.out.print(i + " ");}System.out.println();mergeSort2(bbb);for (int i: bbb) {System.out.print(i + " ");}System.out.println();}
}

(1)递归说明

(2)非递归说明

原理:
k=2
相邻两个数之间merge在一起
k=4
四个数一组,merge在一起
...
一直到k到达N或者超过N

回到代码,代码中mergeSize就是k,外层while循环
  N  10
  mergeSize  1
  L  0
  内层while循环
    M  0
    R  1
    merge(arr, 0, 0, 1)
    L  2
    
    M  2
    R  3
    merge(arr, 2, 2, 3)
    L  4
    
    M  4
    R  5
    merge(arr, 4, 4, 5)
    L  6
    
    ...

然后mergeSize变成2,变成4...

四、归并排序复杂度

T(N)=2*T(N/2)+O(N^1)
根据master可知时间复杂度为O(N*logN)
merge过程需要辅助数组,所以额外空间复杂度为O(N)
归并排序的实质是把比较行为变成了有序信息并传递,比O(N^2)的排序快

相关文章:

数据结构基础之《(9)—归并排序》

一、什么是归并排序 1、整体是递归&#xff0c;左边排好序右边排好序merge让整体有序 2、让其整体有序的过程里用了排外序方法 3、利用master公式来求解时间复杂度 4、当然可以用非递归实现 二、归并排序说明 1、首先有一个f函数 void f(arr, L, R) 说明&#xff1a;在arr上…...

【深度学习】各种卷积—卷积、反卷积、空洞卷积、可分离卷积、分组卷积

在全连接神经网络中&#xff0c;每个神经元都和上一层的所有神经元彼此连接&#xff0c;这会导致网络的参数量非常大&#xff0c;难以实现复杂数据的处理。为了改善这种情况&#xff0c;卷积神经网络应运而生。 一、卷积 在信号处理中&#xff0c;卷积被定义为一个函数经过翻转…...

远程视频验证如何改变商业安全

如今&#xff0c;商业企业面临着无数的安全挑战。尽管企业的形态和规模各不相同——从餐厅、店面和办公楼到工业地产和购物中心——但诸如入室盗窃、盗窃、破坏和人身攻击等威胁让安全主管时刻保持警惕。 虽然传统的监控摄像头网络帮助组织扩大了其态势感知能力&#xff0c;但…...

电脑启动需要经历哪些过程?

传统BIOS启动流程 1. BIOS BIOS 启动&#xff0c;BIOS程序是烧进主板自带的ROM里的&#xff0c;所以无硬盘也可以启动。BIOS先进行自检&#xff0c;检查内存、显卡、磁盘等关键设备是否存在功能异常&#xff0c;会有蜂鸣器汇报错误&#xff0c;无错误自检飞快结束。 硬件自检…...

纯Go语言开发人脸检测、瞳孔/眼睛定位与面部特征检测插件-助力GoFly快速开发框架

前言​ 开发纯go插件的原因是因为目前 Go 生态系统中几乎所有现有的人脸检测解决方案都是纯粹绑定到一些 C/C 库&#xff0c;如 ​​OpenCV​​ 或 ​​​dlib​​​&#xff0c;但通过 ​​​cgo​​​ 调用 C 程序会引入巨大的延迟&#xff0c;并在性能方面产生显著的权衡。…...

postman使用正则表达式提取数据实战篇!

之前篇章中postman多接口关联使用的是通过JSON提取器的方式进行提取。 除了JSON提取器提取数据外还可通过另一种方式——正则表达式来提取数据。 1、使用正则表达式提取器实现接口关联&#xff0c;match匹配 正则匹配表达式将需要提取的字段key:value都放入表达式中&#xff…...

ipmitool使用详解(三)-解决各种dell、hp服务器无法ipmitool连接问题

报错 [root@localhost ~]# ipmitool -H 10.1.2.41 -I lan -U admin -P "password123" lan print 1 Get Session Challenge command failed Error: Unable to establish LAN session Error: Unable to establish IPMI v1.5 / RMCP session [root@localhost ~]# ipmit…...

AWS EC2设置用户名密码登录

使用AWS EC2 设置用户名密码登录 步骤 1: 访问控制台 登录到AWS管理控制台。导航至 EC2 Dashboard。在左侧导航栏中选择 Instances。选择需要配置的实例。使用 EC2 Instance Connect 访问实例控制台。 步骤 2: 切换到 root 用户 打开终端或命令行工具&#xff0c;通过SSH连…...

BurpSuite安装教程(详细!!附带下载链接)

声明 学习内容来自 B 站UP主泷羽sec&#xff0c;如涉及侵权马上删除文章。 笔记的只是方便各位师傅学习知识&#xff0c;以下网站只涉及学习内容&#xff0c;其他的都与本人无关&#xff0c;切莫逾越法律红线&#xff0c;否则后果自负。 ✍&#x1f3fb;作者简介&#xff1a;致…...

MIPS寄存器文件设计实验

今天写MIPS寄存器文件设计实验&#xff0c;同时复习一下MIPS这块地方 实验要求&#xff1a; 一、寄存器的作用 想象一下&#xff0c;你正在厨房准备做一顿大餐。你需要用到各种食材和工具&#xff0c;比如刀、锅、砧板&#xff0c;还有食材本身&#xff0c;比如肉、菜、调料等…...

uniapp使用扩展组件uni-data-select出现的问题汇总

前言 不知道大家有没有学习过我的这门课程那&#xff0c;《uniCloud云开发Vue3版本官方推荐用法》&#xff0c;这么课程已经得到了官方推荐&#xff0c;想要快速上手unicloud的小伙伴们&#xff0c;可以学习一下这么课程哦&#xff0c;不要忘了给一键三连呀。 在录制这门课程…...

反向代理模块开发

1 概念 1.1 反向代理概念 反向代理是指以代理服务器来接收客户端的请求&#xff0c;然后将请求转发给内部网络上的服务器&#xff0c;将从服务器上得到的结果返回给客户端&#xff0c;此时代理服务器对外表现为一个反向代理服务器。 对于客户端来说&#xff0c;反向代理就相当于…...

海康面阵、线阵、读码器及3D相机接线说明

为帮助用户快速了解和配置海康系列设备的接线方式&#xff0c;本文将针对海康面阵相机、线阵相机、读码器和3D相机的主要接口及接线方法进行全面整理和说明。 一、海康面阵相机接线说明 海康面阵相机使用6-pin P7接口&#xff0c;其功能设计包括电源输入、光耦隔离信号输入输出…...

AI与ArcGIS Pro的地理空间分析和可视化

AI思维已经成为一种必备的能力&#xff0c;ArcGIS Pro3的卓越性能与ChatGPT的智能交互相结合&#xff0c;将会为您打造了一个全新的工作流程! 那么如何将火热的ChatGPT与ArcGIS Pro3相结合&#xff0c;使我们无需自己进行复杂的编程&#xff0c;通过强大的ChatGPT辅助我们完成地…...

详解HTML5语言

文章目录 前言任务一 认识HTML5任务描述&#xff1a;知识一 HTML5基础知识 任务二 HTML 5语义元素任务描述&#xff1a;知识一 HTML5新增结构元素知识二 HTML5文本语义元素 总结 前言 HTML5是一个新的网络标准&#xff0c;现在仍处于发展阶段。目标是取代现有的HTML 4.01和XHT…...

docker compose一键启动ES集群和kibana

集群启用了XPACK后&#xff0c;只有第一次可以启动成功。要是宕机了。就启动不了了。&#xff08;除非删除data目录所有数据&#xff09;生产环境 启用了后 建议配置 自定义证书。 services:es01:image: "docker.elastic.co/elasticsearch/elasticsearch:7.17.25"co…...

遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络

遗传算法与深度学习实战&#xff08;25&#xff09;——使用Keras构建卷积神经网络 0. 前言1. 卷积神经网络基本概念1.1 卷积1.2 步幅1.3 填充1.4 激活函数1.5 池化 2. 使用 Keras 构建卷积神经网络3. CNN 层的问题4. 模型泛化小结系列链接 0. 前言 卷积神经网络 (Convolution…...

pytest+allure生成报告显示loading和404

pytestallure执行测试脚本后&#xff0c;通常会在电脑的磁盘上建立一个临时文件夹&#xff0c;里面存放allure测试报告&#xff0c;但是这个测试报告index.html文件单独去打开&#xff0c;却显示loading和404, 这个时候就要用一些办法来解决这个报告显示的问题了。 用命令产生…...

为何划分 Vue 项目结构组件?划分结构和组件解决了什么问题?为什么要这么做?

在一个大型 Vue 项目中,合理的目录结构和组件划分至关重要。良好的结构可以提高开发效率,减少维护成本,并使得团队合作更加顺畅。下面我将详细讲解如何在 Vue 项目中进行目录结构和组件划分,并结合实际项目代码示例进行说明。 1. 为什么要划分结构和组件? 1.1 提高可维护…...

springboot中使用mongodb完成评论功能

pom文件中引入 <!-- mongodb --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId> </dependency> yml中配置连接 data:mongodb:uri: mongodb://admin:1234561…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...