Elasticsearch实战:从搜索到数据分析的全面应用指南
Elasticsearch(简称 ES)是一个强大的分布式搜索引擎和分析工具,它能够快速处理海量数据,并提供全文检索、结构化搜索、数据分析等功能。在现代系统中,它不仅是搜索的核心组件,也是数据分析的有力工具。
本文将结合实际场景,从核心概念到高级应用,带你全面了解 Elasticsearch 的实战应用。
一、为什么选择 Elasticsearch?
Elasticsearch 的受欢迎程度源于以下核心特性:
-
高性能搜索与分析
ES 基于倒排索引(Inverted Index),支持毫秒级响应,适合海量数据场景。 -
分布式架构
支持分片与副本,提供高可用性和水平扩展能力。 -
灵活的数据模型
使用 JSON 文档存储,支持丰富的数据类型和动态映射。 -
强大的生态系统
与 Kibana、Logstash(Elastic Stack)无缝集成,覆盖从数据采集、存储到可视化的完整链条。
二、典型应用场景
1. 全文检索
最常见的场景是搜索引擎,如电商网站的商品搜索、博客的文章检索等。
关键词高亮、模糊匹配、同义词扩展等功能是 ES 的强项。
2. 日志与监控
结合 Logstash 和 Kibana,可以实现日志采集、存储和可视化,适用于分布式系统的性能监控和错误排查。
3. 实时分析
通过 Aggregations(聚合功能),可实时分析网站流量、用户行为等数据。
4. 推荐系统
通过向量搜索(Vector Search)和自定义打分机制,ES 能为电商、视频平台提供个性化推荐。
三、核心概念与基础操作
1. 核心概念
-
Index(索引)
类似于数据库中的表,存储相关联的文档。 -
Document(文档)
基本数据单元,JSON 格式存储。
示例文档:{"title": "Elasticsearch实战指南","author": "John Doe","tags": ["搜索", "大数据"],"published_date": "2024-01-01" } -
Shard(分片)
索引被划分为多个分片,每个分片可以分布在不同节点上。 -
Mapping(映射)
定义字段类型及其特性,如text类型用于全文搜索,keyword类型用于精确匹配。
2. 基础操作
创建索引
PUT /library
{"mappings": {"properties": {"title": { "type": "text" },"author": { "type": "keyword" },"tags": { "type": "keyword" },"published_date": { "type": "date" }}}
}
插入文档
POST /library/_doc/1
{"title": "Elasticsearch入门","author": "Alice","tags": ["教程", "搜索"],"published_date": "2023-11-21"
}
搜索文档
搜索包含“搜索”关键词的文档:
GET /library/_search
{"query": {"match": {"title": "搜索"}}
}
聚合分析
统计每个作者的文档数量:
GET /library/_search
{"size": 0,"aggs": {"authors_count": {"terms": {"field": "author"}}}
}
四、高级实战应用
1. 自定义评分机制
通过自定义脚本增强搜索相关性,例如结合用户点击数据调整权重。
GET /library/_search
{"query": {"function_score": {"query": { "match": { "title": "Elasticsearch" } },"functions": [{"field_value_factor": {"field": "popularity","factor": 1.2,"modifier": "sqrt"}}]}}
}
2. 实时日志分析
采集日志数据到 Elasticsearch,使用 Kibana 可视化分析。
示例 Logstash 配置:
input {file {path => "/var/log/app.log"start_position => "beginning"}
}
filter {grok {match => { "message" => "%{TIMESTAMP_ISO8601:timestamp} %{LOGLEVEL:level} %{GREEDYDATA:message}" }}
}
output {elasticsearch {hosts => ["http://localhost:9200"]index => "logs-%{+YYYY.MM.dd}"}
}
3. 地理位置搜索
通过 Geo 类型支持地理位置相关查询,例如查找附近的商家。
PUT /locations
{"mappings": {"properties": {"name": { "type": "text" },"location": { "type": "geo_point" }}}
}
搜索距离指定位置 5 公里的商家:
GET /locations/_search
{"query": {"geo_distance": {"distance": "5km","location": {"lat": 40.7128,"lon": -74.0060}}}
}
五、性能优化技巧
1. 索引设计优化
- 使用
keyword类型代替text类型存储精确值。 - 合理设置分片数量,避免过多的小分片。
2. 查询优化
- 使用
filter代替query,避免评分计算。 - 限制返回字段(
_source),减少网络传输和解析负担。
3. 数据写入优化
- 批量写入(Bulk API)提高写入效率。
- 使用
refresh_interval控制刷新频率,减少写入时的索引开销。
六、案例分享:电商搜索平台
需求背景
为某电商平台构建搜索引擎,支持商品搜索、分类过滤、价格排序,并提供个性化推荐。
实现步骤
-
创建索引
定义商品的结构,包括名称、分类、价格等字段。 -
全文检索
使用match查询实现关键词搜索,结合highlight返回高亮内容。 -
分类过滤
使用terms查询实现按分类筛选。 -
价格排序
在查询中指定排序字段:"sort": [{ "price": "asc" } ] -
个性化推荐
使用function_score调整权重,优先展示用户偏好的商品。
七、总结
Elasticsearch 在搜索和分析领域无疑是一颗闪耀的明星,其灵活的架构和强大的功能让它成为许多企业的首选工具。从简单的关键词搜索到复杂的实时分析,Elasticsearch 都能提供高效且可扩展的解决方案。
通过实践,我们可以充分挖掘其潜力,让数据真正服务于业务价值。如果你还没有尝试过 Elasticsearch,现在就是最好的开始。
相关文章:
Elasticsearch实战:从搜索到数据分析的全面应用指南
Elasticsearch(简称 ES)是一个强大的分布式搜索引擎和分析工具,它能够快速处理海量数据,并提供全文检索、结构化搜索、数据分析等功能。在现代系统中,它不仅是搜索的核心组件,也是数据分析的有力工具。 本文…...
BEPUphysicsint定点数3D物理引擎介绍
原文:BEPUphysicsint定点数3D物理引擎介绍 - 哔哩哔哩 帧同步的游戏中如果用物理引擎,为了保证不同设备上的结果一致,需要采用定点数来计算迭代游戏过程中的物理运算。也就是我们通常说的定点数物理引擎(确定性物理引擎)。本系列教程给大家详细的讲解如…...
宠物领养平台构建:SpringBoot技术路线图
摘 要 如今社会上各行各业,都在用属于自己专用的软件来进行工作,互联网发展到这个时候,人们已经发现离不开了互联网。互联网的发展,离不开一些新的技术,而新技术的产生往往是为了解决现有问题而产生的。针对于宠物领养…...
解决Flink读取kafka主题数据无报错无数据打印的重大发现(问题已解决)
亦菲、彦祖们,今天使用idea开发的时候,运行flink程序(读取kafka主题数据)的时候,发现操作台什么数据都没有只有满屏红色日志输出,关键干嘛?一点报错都没有,一开始我觉得应该执行程序…...
python自动化测开面试题汇总(持续更新)
介绍他们测某云,底层是linux可以挂多个磁盘,有现有的接口,用python实现热插拔,查看它的功能,项目目前用到的是python,linux和虚拟云,结合你之前的项目介绍下三者(3min之内) 列表判断是否有重复元素 求1-9的…...
1-1 Gerrit实用指南
注:学习gerrit需要拥有git相关知识,如果没有学习过git请先回顾git相关知识点 黑马程序员git教程 一小时学会git git参考博客 git 实操博客 1.0 定义 Gerrit 是一个基于 Web 的代码审查系统,它使用 Git 作为底层版本控制系统。Gerrit 的主要功…...
docker如何安装redis
第一步 如果未指定redis,则安装的是最新版的 docker pull redis 创建一个目录 mkdir /usr/local/docker/redis 然后直接可以下载redis,这是方式确实不怎么好,应该找在官网上找对应的redis配置文件 wget http://download.redis.io/redis-stab…...
省级新质生产力数据(蔡湘杰版本)2012-2022年
测算方式:参考《当代经济管理》蔡湘杰(2024)老师研究的做法,本文以劳动者、劳动对象和劳动资料为准则层,从新质生产力“量的积累、质的提升、新的拓展”三维目标出发,构建新质生产力综合评价指标体系&#…...
【游资悟道】-作手新一悟道心法
作手新一经典语录节选: 乔帮主传完整版:做股票5年,炼成18式,成为A股低吸大神!从小白到大神,散户炒股的六个过程,不看不知道自己水平 围着主线做,多研究龙头,研究涨停&am…...
Diffusion中的Unet (DIMP)
针对UNet2DConditionModel模型 查看Unet的源码,得知Unet的down,mid,up blocks的类型分别是: down_block_types: Tuple[str] ("CrossAttnDownBlock2D","CrossAttnDownBlock2D","CrossAttnDownBlock2D","DownBlock2…...
编译以前项目更改在x64下面时报错:函数“PVOID GetCurrentFiber(void)”已有主体
win32下面编译成功,但是x64报错 1>GetWord.c 1>md5.c 这两个文件无法编译 1>C:\Program Files (x86)\Windows Kits\10\Include\10.0.22000.0\um\winnt.h(24125,1): error C2084: 函数“PVOID GetCurrentFiber(void)”已有主体 1>C:\Program Files (x…...
【AIGC】大模型面试高频考点-数据清洗篇
【AIGC】大模型面试高频考点-数据清洗篇 (一)常用文本清洗方法1.去除无用的符号2.去除表情符号3.文本只保留汉字4.中文繁体、简体转换5.删除 HTML 标签和特殊字符6.标记化7.小写8.停用词删除9.词干提取和词形还原10.处理缺失数据11.删除重复文本12.处理嘈…...
当测试时间与测试资源有限时,你会如何优化测试策略?
1.优先级排序:根据项目的需求和紧急程度进行优先级排序,将测试用例用例划分优先级,合理安排测试资源 和时间。这样能够保障在有限的时间内测试到最关键的功能 2.提前介入测试:在开发过程中提前进行测试,可以迅速发现问…...
基于R语言森林生态系统结构、功能与稳定性分析与可视化
在生态学研究中,森林生态系统的结构、功能与稳定性是核心研究内容之一。这些方面不仅关系到森林动态变化和物种多样性,还直接影响森林提供的生态服务功能及其应对环境变化的能力。森林生态系统的结构主要包括物种组成、树种多样性、树木的空间分布与密度…...
如何使用 Python 实现插件式架构
使用 Python 实现插件式架构可以通过动态加载和调用模块或类,构建一个易于扩展和维护的系统。以下是实现插件式架构的步骤和核心思想。 1. 插件式架构核心概念 主程序:负责加载、管理插件,并调用插件的功能。插件:独立的模块或类…...
【北京迅为】iTOP-4412全能版使用手册-第二十章 搭建和测试NFS服务器
iTOP-4412全能版采用四核Cortex-A9,主频为1.4GHz-1.6GHz,配备S5M8767 电源管理,集成USB HUB,选用高品质板对板连接器稳定可靠,大厂生产,做工精良。接口一应俱全,开发更简单,搭载全网通4G、支持WIFI、蓝牙、…...
【纯原生js】原生实现h5落地页面中的单选组件按钮及功能
h5端的按钮系统自带的一般都很丑,需要我们进行二次美化,比如单选按钮复选框之类的,那怎么对其进行html和css的改造? 实现效果 实现代码 <section id"tags"><h2>给景区添加标题</h2><label><…...
深入浅出:开发者如何快速上手Web3生态系统
Web3作为互联网的未来发展方向,正在逐步改变传统互联网架构,推动去中心化技术的发展。对于开发者而言,Web3代表着一个充满机遇与挑战的新领域,学习和掌握Web3的基本技术和工具,将为未来的项目开发提供强大的支持。那么…...
通过深度点图表示的隐式场实现肺树结构的高效解剖标注文献速递-生成式模型与transformer在医学影像中的应用
Title 题目 Efficient anatomical labeling of pulmonary tree structures via deeppoint-graph representation-based implicit fields 通过深度点图表示的隐式场实现肺树结构的高效解剖标注 01 文献速递介绍 近年来,肺部疾病(Decramer等ÿ…...
数据结构 (17)广义表
前言 数据结构中的广义表(Generalized List,又称列表Lists)是一种重要的数据结构,它是对线性表的一种推广,放松了对表元素的原子限制,容许它们具有其自身的结构。 一、定义与表示 定义:广义表是…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
