当前位置: 首页 > news >正文

【一维DP】【三种解法】力扣983. 最低票价

在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行。在接下来的一年里,你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。

火车票有 三种不同的销售方式 :

一张 为期一天 的通行证售价为 costs[0] 美元;
一张 为期七天 的通行证售价为 costs[1] 美元;
一张 为期三十天 的通行证售价为 costs[2] 美元。
通行证允许数天无限制的旅行。 例如,如果我们在第 2 天获得一张 为期 7 天 的通行证,那么我们可以连着旅行 7 天:第 2 天、第 3 天、第 4 天、第 5 天、第 6 天、第 7 天和第 8 天。

返回 你想要完成在给定的列表 days 中列出的每一天的旅行所需要的最低消费 。

示例 1:
输入:days = [1,4,6,7,8,20], costs = [2,7,15]
输出:11
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 1 天生效。
在第 3 天,你花了 costs[1] = $7 买了一张为期 7 天的通行证,它将在第 3, 4, …, 9 天生效。
在第 20 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 20 天生效。
你总共花了 $11,并完成了你计划的每一天旅行。

示例 2:
输入:days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
输出:17
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[2] = $15 买了一张为期 30 天的通行证,它将在第 1, 2, …, 30 天生效。
在第 31 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 31 天生效。
你总共花了 $17,并完成了你计划的每一天旅行。

提示:
1 <= days.length <= 365
1 <= days[i] <= 365
days 按顺序严格递增
costs.length == 3
1 <= costs[i] <= 1000

记忆化搜索

class Solution {
public:int mincostTickets(vector<int>& days, vector<int>& costs) {int last_day = days.back();unordered_set<int> day_set(days.begin(), days.end());vector<int> memo(last_day + 1, -1);auto dfs = [&](auto&& dfs, int i) -> int{if(i <= 0){return 0;}int& res = memo[i];if(res != -1){return res;}if(!day_set.count(i)){return res = dfs(dfs, i - 1);}return res = min({dfs(dfs, i-1) + costs[0],dfs(dfs, i-7) + costs[1],dfs(dfs, i-30) + costs[2]});};return dfs(dfs, last_day);}
};

时间复杂度:O(D),其中 D=days[n−1],n 为 days 的长度。由于每个状态只会计算一次,动态规划的时间复杂度 = 状态个数 × 单个状态的计算时间。本题状态个数等于 O(D),单个状态的计算时间为 O(1),所以总的时间复杂度为 O(D)。
空间复杂度:O(D)。保存多少状态,就需要多少空间。

我们可以使用记忆化搜索的方式,定义一个memo用来记忆化计算过的结果,我们可以使用一个无序集合unordered_set来储存days的元素,这样有利于我们查找第i天是否有在days中,如果没有在days中的话就往前查找最近的days元素,如果存在的话就进行状态转移。

递推

class Solution {
public:int mincostTickets(vector<int>& days, vector<int>& costs) {int last_day = days.back();unordered_set<int> day_set(days.begin(), days.end());vector<int> f(last_day + 1);for (int i = 1; i <= last_day; i++) {if (!day_set.contains(i)) {f[i] = f[i - 1];} else {f[i] = min({f[i - 1] + costs[0],f[max(i - 7, 0)] + costs[1],f[max(i - 30, 0)] + costs[2]});}}return f[last_day];}
};

记忆化搜索可以1:1翻译成递推。

优化:三指针

class Solution {
public:int mincostTickets(vector<int>& days, vector<int>& costs) {int n = days.size();vector<int> f(n+1);int j = 0, k = 0;for(int i = 0; i < n; i++){int d = days[i];while(days[j] <= d - 7){j++;}       while(days[k] <= d - 30){k++;}f[i+1] = min({f[i] + costs[0], f[j] + costs[1], f[k] + costs[2]});         }return f[n];}
};

时间复杂度:O(n),其中 n 是 days 的长度。注意二重循环中的下标 j 和 k 都只会增大,不会减小或者重置。由于下标只会增大 O(n) 次,所以二重循环的总循环次数是 O(n) 的。
空间复杂度:O(n)。

前面的记忆化搜索和递推的方法,都取决于days中最大元素的大小是多少,如果days中最大元素的大小很大,那么就会导致很多计算是不必要的,因为我们实际上在状态转移过程中需要计算的是days[i]存在的天数,如果所计算的天数不属于days[i],也会往前转移到最近的days[i]元素。

所以为了避免计算不存在days中的天数的过程浪费太多时间,我们可以定义指针i、j、k,用来表示1天、7天、30天三种票,f[i+1] 表示完成 days[0] 到 days[i] 的最小花费。也就是说days[j]计算后实际上是到days[0]到days[j-1]的最小花费,也就是说将days中指针转移到f上需要加上1,而i,j,k在days中的指针由于while计算,会停在所指元素的右边,可以理解为状态转移方程中的f[j]实际上是f[j-1 + 1]。

相关文章:

【一维DP】【三种解法】力扣983. 最低票价

在一个火车旅行很受欢迎的国度&#xff0c;你提前一年计划了一些火车旅行。在接下来的一年里&#xff0c;你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。 火车票有 三种不同的销售方式 &#xff1a; 一张 为期一天 的通行证售价为 costs[0] …...

【头歌实训:递归实现斐波那契数列】

头歌实训&#xff1a;递归实现斐波那契数列 文章目录 任务描述相关知识递归相关知识递归举例何时使用递归定义是递归的数据结构是递归的问题的求解方法是递归的 编程要求测试说明源代码&#xff1a; 任务描述 本关任务&#xff1a;递归求解斐波那契数列。 相关知识 为了完成…...

IntelliJ IDEA配置(mac版本)

用惯了eclipse开发java的小伙伴们&#xff0c;初次接触IntelliJ IDEA可能会和我一样&#xff0c;多少有些不适感&#xff0c;在使用过程中总想着eclipse得对应功能。 接下来&#xff0c;我就总结下我日常开发中遇到的常用配置&#xff08;不包括快捷键&#xff0c;我认为每个人…...

CSAPP Cache Lab(缓存模拟器)

前言 理解高速缓存对 C 程序性能的影响&#xff0c;通过两部分实验达成&#xff1a;编写高速缓存模拟器&#xff1b;优化矩阵转置函数以减少高速缓存未命中次数。Part A一开始根本不知道要做什么&#xff0c;慢慢看官方文档&#xff0c;以及一些博客&#xff0c;和B站视频&…...

【机器学习】机器学习的基本分类-监督学习-逻辑回归-对数似然损失函数(Log-Likelihood Loss Function)

对数似然损失函数&#xff08;Log-Likelihood Loss Function&#xff09; 对数似然损失函数是机器学习和统计学中广泛使用的一种损失函数&#xff0c;特别是在分类问题&#xff08;例如逻辑回归、神经网络&#xff09;中应用最为广泛。它基于最大似然估计原理&#xff0c;通过…...

51c自动驾驶~合集35

我自己的原文哦~ https://blog.51cto.com/whaosoft/12206500 #纯视觉方案的智驾在大雾天还能用吗&#xff1f; 碰上大雾天气&#xff0c;纯视觉方案是如何识别车辆和障碍物的呢&#xff1f; 如果真的是纯纯的&#xff0c;特头铁的那种纯视觉方案的话。 可以简单粗暴的理解为…...

网络安全体系与网络安全模型

4.1 网络安全体系概述 4.1.1 网络安全体系概述 一般面言&#xff0c;网络安全体系是网络安全保障系统的最高层概念抽象&#xff0c;是由各种网络安全单元按照一定的规则组成的&#xff0c;共同实现网络安全的目标。网络安全体系包括法律法规政策文件、安全策略、组织管理、技术…...

antd table 自定义表头过滤表格内容

注意&#xff1a;该功能只能过滤可一次性返回全部数据的表格&#xff0c;通过接口分页查询的请自主按照需求改动哈~ 实现步骤&#xff1a; 1.在要过滤的列表表头增加过滤图标&#xff0c;点击图标显示浮窗 2.浮窗内显示整列可选选项&#xff0c;通过勾选单选或者全选、搜索框来…...

Elasticsearch实战:从搜索到数据分析的全面应用指南

Elasticsearch&#xff08;简称 ES&#xff09;是一个强大的分布式搜索引擎和分析工具&#xff0c;它能够快速处理海量数据&#xff0c;并提供全文检索、结构化搜索、数据分析等功能。在现代系统中&#xff0c;它不仅是搜索的核心组件&#xff0c;也是数据分析的有力工具。 本文…...

BEPUphysicsint定点数3D物理引擎介绍

原文&#xff1a;BEPUphysicsint定点数3D物理引擎介绍 - 哔哩哔哩 帧同步的游戏中如果用物理引擎&#xff0c;为了保证不同设备上的结果一致,需要采用定点数来计算迭代游戏过程中的物理运算。也就是我们通常说的定点数物理引擎(确定性物理引擎)。本系列教程给大家详细的讲解如…...

宠物领养平台构建:SpringBoot技术路线图

摘 要 如今社会上各行各业&#xff0c;都在用属于自己专用的软件来进行工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。互联网的发展&#xff0c;离不开一些新的技术&#xff0c;而新技术的产生往往是为了解决现有问题而产生的。针对于宠物领养…...

解决Flink读取kafka主题数据无报错无数据打印的重大发现(问题已解决)

亦菲、彦祖们&#xff0c;今天使用idea开发的时候&#xff0c;运行flink程序&#xff08;读取kafka主题数据&#xff09;的时候&#xff0c;发现操作台什么数据都没有只有满屏红色日志输出&#xff0c;关键干嘛&#xff1f;一点报错都没有&#xff0c;一开始我觉得应该执行程序…...

python自动化测开面试题汇总(持续更新)

介绍他们测某云&#xff0c;底层是linux可以挂多个磁盘&#xff0c;有现有的接口&#xff0c;用python实现热插拔&#xff0c;查看它的功能&#xff0c;项目目前用到的是python,linux和虚拟云&#xff0c;结合你之前的项目介绍下三者(3min之内) 列表判断是否有重复元素 求1-9的…...

1-1 Gerrit实用指南

注&#xff1a;学习gerrit需要拥有git相关知识&#xff0c;如果没有学习过git请先回顾git相关知识点 黑马程序员git教程 一小时学会git git参考博客 git 实操博客 1.0 定义 Gerrit 是一个基于 Web 的代码审查系统&#xff0c;它使用 Git 作为底层版本控制系统。Gerrit 的主要功…...

docker如何安装redis

第一步 如果未指定redis&#xff0c;则安装的是最新版的 docker pull redis 创建一个目录 mkdir /usr/local/docker/redis 然后直接可以下载redis&#xff0c;这是方式确实不怎么好&#xff0c;应该找在官网上找对应的redis配置文件 wget http://download.redis.io/redis-stab…...

省级新质生产力数据(蔡湘杰版本)2012-2022年

测算方式&#xff1a;参考《当代经济管理》蔡湘杰&#xff08;2024&#xff09;老师研究的做法&#xff0c;本文以劳动者、劳动对象和劳动资料为准则层&#xff0c;从新质生产力“量的积累、质的提升、新的拓展”三维目标出发&#xff0c;构建新质生产力综合评价指标体系&#…...

【游资悟道】-作手新一悟道心法

作手新一经典语录节选&#xff1a; 乔帮主传完整版&#xff1a;做股票5年&#xff0c;炼成18式&#xff0c;成为A股低吸大神&#xff01;从小白到大神&#xff0c;散户炒股的六个过程&#xff0c;不看不知道自己水平 围着主线做&#xff0c;多研究龙头&#xff0c;研究涨停&am…...

Diffusion中的Unet (DIMP)

针对UNet2DConditionModel模型 查看Unet的源码&#xff0c;得知Unet的down,mid,up blocks的类型分别是&#xff1a; down_block_types: Tuple[str] ("CrossAttnDownBlock2D","CrossAttnDownBlock2D","CrossAttnDownBlock2D","DownBlock2…...

编译以前项目更改在x64下面时报错:函数“PVOID GetCurrentFiber(void)”已有主体

win32下面编译成功&#xff0c;但是x64报错 1>GetWord.c 1>md5.c 这两个文件无法编译 1>C:\Program Files (x86)\Windows Kits\10\Include\10.0.22000.0\um\winnt.h(24125,1): error C2084: 函数“PVOID GetCurrentFiber(void)”已有主体 1>C:\Program Files (x…...

【AIGC】大模型面试高频考点-数据清洗篇

【AIGC】大模型面试高频考点-数据清洗篇 &#xff08;一&#xff09;常用文本清洗方法1.去除无用的符号2.去除表情符号3.文本只保留汉字4.中文繁体、简体转换5.删除 HTML 标签和特殊字符6.标记化7.小写8.停用词删除9.词干提取和词形还原10.处理缺失数据11.删除重复文本12.处理嘈…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...