【一维DP】【三种解法】力扣983. 最低票价
在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行。在接下来的一年里,你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。
火车票有 三种不同的销售方式 :
一张 为期一天 的通行证售价为 costs[0] 美元;
一张 为期七天 的通行证售价为 costs[1] 美元;
一张 为期三十天 的通行证售价为 costs[2] 美元。
通行证允许数天无限制的旅行。 例如,如果我们在第 2 天获得一张 为期 7 天 的通行证,那么我们可以连着旅行 7 天:第 2 天、第 3 天、第 4 天、第 5 天、第 6 天、第 7 天和第 8 天。
返回 你想要完成在给定的列表 days 中列出的每一天的旅行所需要的最低消费 。
示例 1:
输入:days = [1,4,6,7,8,20], costs = [2,7,15]
输出:11
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 1 天生效。
在第 3 天,你花了 costs[1] = $7 买了一张为期 7 天的通行证,它将在第 3, 4, …, 9 天生效。
在第 20 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 20 天生效。
你总共花了 $11,并完成了你计划的每一天旅行。
示例 2:
输入:days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
输出:17
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[2] = $15 买了一张为期 30 天的通行证,它将在第 1, 2, …, 30 天生效。
在第 31 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 31 天生效。
你总共花了 $17,并完成了你计划的每一天旅行。
提示:
1 <= days.length <= 365
1 <= days[i] <= 365
days 按顺序严格递增
costs.length == 3
1 <= costs[i] <= 1000
记忆化搜索
class Solution {
public:int mincostTickets(vector<int>& days, vector<int>& costs) {int last_day = days.back();unordered_set<int> day_set(days.begin(), days.end());vector<int> memo(last_day + 1, -1);auto dfs = [&](auto&& dfs, int i) -> int{if(i <= 0){return 0;}int& res = memo[i];if(res != -1){return res;}if(!day_set.count(i)){return res = dfs(dfs, i - 1);}return res = min({dfs(dfs, i-1) + costs[0],dfs(dfs, i-7) + costs[1],dfs(dfs, i-30) + costs[2]});};return dfs(dfs, last_day);}
};
时间复杂度:O(D),其中 D=days[n−1],n 为 days 的长度。由于每个状态只会计算一次,动态规划的时间复杂度 = 状态个数 × 单个状态的计算时间。本题状态个数等于 O(D),单个状态的计算时间为 O(1),所以总的时间复杂度为 O(D)。
空间复杂度:O(D)。保存多少状态,就需要多少空间。
我们可以使用记忆化搜索的方式,定义一个memo用来记忆化计算过的结果,我们可以使用一个无序集合unordered_set来储存days的元素,这样有利于我们查找第i天是否有在days中,如果没有在days中的话就往前查找最近的days元素,如果存在的话就进行状态转移。
递推
class Solution {
public:int mincostTickets(vector<int>& days, vector<int>& costs) {int last_day = days.back();unordered_set<int> day_set(days.begin(), days.end());vector<int> f(last_day + 1);for (int i = 1; i <= last_day; i++) {if (!day_set.contains(i)) {f[i] = f[i - 1];} else {f[i] = min({f[i - 1] + costs[0],f[max(i - 7, 0)] + costs[1],f[max(i - 30, 0)] + costs[2]});}}return f[last_day];}
};
记忆化搜索可以1:1翻译成递推。
优化:三指针
class Solution {
public:int mincostTickets(vector<int>& days, vector<int>& costs) {int n = days.size();vector<int> f(n+1);int j = 0, k = 0;for(int i = 0; i < n; i++){int d = days[i];while(days[j] <= d - 7){j++;} while(days[k] <= d - 30){k++;}f[i+1] = min({f[i] + costs[0], f[j] + costs[1], f[k] + costs[2]}); }return f[n];}
};
时间复杂度:O(n),其中 n 是 days 的长度。注意二重循环中的下标 j 和 k 都只会增大,不会减小或者重置。由于下标只会增大 O(n) 次,所以二重循环的总循环次数是 O(n) 的。
空间复杂度:O(n)。
前面的记忆化搜索和递推的方法,都取决于days中最大元素的大小是多少,如果days中最大元素的大小很大,那么就会导致很多计算是不必要的,因为我们实际上在状态转移过程中需要计算的是days[i]存在的天数,如果所计算的天数不属于days[i],也会往前转移到最近的days[i]元素。
所以为了避免计算不存在days中的天数的过程浪费太多时间,我们可以定义指针i、j、k,用来表示1天、7天、30天三种票,f[i+1] 表示完成 days[0] 到 days[i] 的最小花费。也就是说days[j]计算后实际上是到days[0]到days[j-1]的最小花费,也就是说将days中指针转移到f上需要加上1,而i,j,k在days中的指针由于while计算,会停在所指元素的右边,可以理解为状态转移方程中的f[j]实际上是f[j-1 + 1]。
相关文章:
【一维DP】【三种解法】力扣983. 最低票价
在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行。在接下来的一年里,你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。 火车票有 三种不同的销售方式 : 一张 为期一天 的通行证售价为 costs[0] …...
【头歌实训:递归实现斐波那契数列】
头歌实训:递归实现斐波那契数列 文章目录 任务描述相关知识递归相关知识递归举例何时使用递归定义是递归的数据结构是递归的问题的求解方法是递归的 编程要求测试说明源代码: 任务描述 本关任务:递归求解斐波那契数列。 相关知识 为了完成…...
IntelliJ IDEA配置(mac版本)
用惯了eclipse开发java的小伙伴们,初次接触IntelliJ IDEA可能会和我一样,多少有些不适感,在使用过程中总想着eclipse得对应功能。 接下来,我就总结下我日常开发中遇到的常用配置(不包括快捷键,我认为每个人…...
CSAPP Cache Lab(缓存模拟器)
前言 理解高速缓存对 C 程序性能的影响,通过两部分实验达成:编写高速缓存模拟器;优化矩阵转置函数以减少高速缓存未命中次数。Part A一开始根本不知道要做什么,慢慢看官方文档,以及一些博客,和B站视频&…...
【机器学习】机器学习的基本分类-监督学习-逻辑回归-对数似然损失函数(Log-Likelihood Loss Function)
对数似然损失函数(Log-Likelihood Loss Function) 对数似然损失函数是机器学习和统计学中广泛使用的一种损失函数,特别是在分类问题(例如逻辑回归、神经网络)中应用最为广泛。它基于最大似然估计原理,通过…...
51c自动驾驶~合集35
我自己的原文哦~ https://blog.51cto.com/whaosoft/12206500 #纯视觉方案的智驾在大雾天还能用吗? 碰上大雾天气,纯视觉方案是如何识别车辆和障碍物的呢? 如果真的是纯纯的,特头铁的那种纯视觉方案的话。 可以简单粗暴的理解为…...
网络安全体系与网络安全模型
4.1 网络安全体系概述 4.1.1 网络安全体系概述 一般面言,网络安全体系是网络安全保障系统的最高层概念抽象,是由各种网络安全单元按照一定的规则组成的,共同实现网络安全的目标。网络安全体系包括法律法规政策文件、安全策略、组织管理、技术…...
antd table 自定义表头过滤表格内容
注意:该功能只能过滤可一次性返回全部数据的表格,通过接口分页查询的请自主按照需求改动哈~ 实现步骤: 1.在要过滤的列表表头增加过滤图标,点击图标显示浮窗 2.浮窗内显示整列可选选项,通过勾选单选或者全选、搜索框来…...
Elasticsearch实战:从搜索到数据分析的全面应用指南
Elasticsearch(简称 ES)是一个强大的分布式搜索引擎和分析工具,它能够快速处理海量数据,并提供全文检索、结构化搜索、数据分析等功能。在现代系统中,它不仅是搜索的核心组件,也是数据分析的有力工具。 本文…...
BEPUphysicsint定点数3D物理引擎介绍
原文:BEPUphysicsint定点数3D物理引擎介绍 - 哔哩哔哩 帧同步的游戏中如果用物理引擎,为了保证不同设备上的结果一致,需要采用定点数来计算迭代游戏过程中的物理运算。也就是我们通常说的定点数物理引擎(确定性物理引擎)。本系列教程给大家详细的讲解如…...
宠物领养平台构建:SpringBoot技术路线图
摘 要 如今社会上各行各业,都在用属于自己专用的软件来进行工作,互联网发展到这个时候,人们已经发现离不开了互联网。互联网的发展,离不开一些新的技术,而新技术的产生往往是为了解决现有问题而产生的。针对于宠物领养…...
解决Flink读取kafka主题数据无报错无数据打印的重大发现(问题已解决)
亦菲、彦祖们,今天使用idea开发的时候,运行flink程序(读取kafka主题数据)的时候,发现操作台什么数据都没有只有满屏红色日志输出,关键干嘛?一点报错都没有,一开始我觉得应该执行程序…...
python自动化测开面试题汇总(持续更新)
介绍他们测某云,底层是linux可以挂多个磁盘,有现有的接口,用python实现热插拔,查看它的功能,项目目前用到的是python,linux和虚拟云,结合你之前的项目介绍下三者(3min之内) 列表判断是否有重复元素 求1-9的…...
1-1 Gerrit实用指南
注:学习gerrit需要拥有git相关知识,如果没有学习过git请先回顾git相关知识点 黑马程序员git教程 一小时学会git git参考博客 git 实操博客 1.0 定义 Gerrit 是一个基于 Web 的代码审查系统,它使用 Git 作为底层版本控制系统。Gerrit 的主要功…...
docker如何安装redis
第一步 如果未指定redis,则安装的是最新版的 docker pull redis 创建一个目录 mkdir /usr/local/docker/redis 然后直接可以下载redis,这是方式确实不怎么好,应该找在官网上找对应的redis配置文件 wget http://download.redis.io/redis-stab…...
省级新质生产力数据(蔡湘杰版本)2012-2022年
测算方式:参考《当代经济管理》蔡湘杰(2024)老师研究的做法,本文以劳动者、劳动对象和劳动资料为准则层,从新质生产力“量的积累、质的提升、新的拓展”三维目标出发,构建新质生产力综合评价指标体系&#…...
【游资悟道】-作手新一悟道心法
作手新一经典语录节选: 乔帮主传完整版:做股票5年,炼成18式,成为A股低吸大神!从小白到大神,散户炒股的六个过程,不看不知道自己水平 围着主线做,多研究龙头,研究涨停&am…...
Diffusion中的Unet (DIMP)
针对UNet2DConditionModel模型 查看Unet的源码,得知Unet的down,mid,up blocks的类型分别是: down_block_types: Tuple[str] ("CrossAttnDownBlock2D","CrossAttnDownBlock2D","CrossAttnDownBlock2D","DownBlock2…...
编译以前项目更改在x64下面时报错:函数“PVOID GetCurrentFiber(void)”已有主体
win32下面编译成功,但是x64报错 1>GetWord.c 1>md5.c 这两个文件无法编译 1>C:\Program Files (x86)\Windows Kits\10\Include\10.0.22000.0\um\winnt.h(24125,1): error C2084: 函数“PVOID GetCurrentFiber(void)”已有主体 1>C:\Program Files (x…...
【AIGC】大模型面试高频考点-数据清洗篇
【AIGC】大模型面试高频考点-数据清洗篇 (一)常用文本清洗方法1.去除无用的符号2.去除表情符号3.文本只保留汉字4.中文繁体、简体转换5.删除 HTML 标签和特殊字符6.标记化7.小写8.停用词删除9.词干提取和词形还原10.处理缺失数据11.删除重复文本12.处理嘈…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
