当前位置: 首页 > news >正文

【小白学机器学习36】关于独立概率,联合概率,交叉概率,交叉概率和,总概率等 概念辨析的例子

目录

1  先说结论

2 联合概率

3 边缘概率

4  (行/列)边缘概率的和= 总概率=1 

5 条件概率

5.1 条件概率的除法公式

5.2 条件概率和联合概率区别


1  先说结论

关于独立概率,联合概率,交叉概率,交叉概率和,总概率

类型含义  计算   
联合概率两个独立事件一起发生的概率两个事件概率相乘 
边缘概率同1行 /同1列的所有联合概率相加的总和两个联合概率相加 
条件概率一定已知条件下发生的概率 两个事件的联合概率/已经发生的概率

2 联合概率

  • 独立概率
  • 联合概率:独立概率1*独立概率2

因为我们知道红色牌概率=1/2, 数字牌概率=40/52,因此 红色数字牌概率=联合概率=1/2*40/52        

3 边缘概率

  • 边缘概率:同1行 /同1列的所有联合概率相加的总和。
  1.  边缘概率分2种:行边缘概率,列边缘概率
  2.  为什么要全部相加?
  3. 因为同1行/列 代表了所有的可能性,必须全加起来才=边缘概率

4  (行/列)边缘概率的和= 总概率=1 

  • 边缘概率的和只有2个
  1. 所有行的边缘概率和
  2. 所有列的边缘概率和
  • (所有行的)Σ边缘概率和=1 = 总概率
  • (所有列的)Σ边缘概率和=1= 总概率
  • (概率空间的)总概率=1                                                   
  • 看行
  • 边缘概率=2个概率相加。也就是 红色数字牌+红色人物牌=显然等于所有红色牌=1/2,    
  • Σ边缘概率之和=2个边缘概率相加。也就是 all红色牌+all蓝色牌=显然等于所有牌=1=100%,                                 
  • 看列
  • 边缘概率=2个概率相加。也就是 红色数字牌+黑色数字牌=20/52+20/52=40/52=所有的数字牌40/52,结果一样                                
  • Σ边缘概率之和=2个边缘概率相加。也就是 all数字牌+all人物牌=40/52+12/52=显然等于所有牌=1=100%,                                 

5 条件概率

5.1 条件概率的除法公式

  •  直接定义和除法公式
  • 条件概率=  事件B已经发生后,A发生的概率
  • 条件概率= P(A|B)= P(AB)/P(B)

5.2 条件概率和联合概率区别

  • 条件概率=联合概率/ 条件本身发生的概率
  • 条件概率= P(A|B)= P(AB)/P(B)

  • 而联合概率写为P(AB) 或者P(A,B),或者P(A and B)
  • 联合概率= P(AB) /1

  • 条件概率= P(AB) /P(B)
  • 联合概率= P(AB) /1
  • 可以发现两者公式不同,主要是公式分母不同,一个是条件发生概率P(B),一个是全概率1
  • 下图中 sample space =1 样本空间的全集

相关文章:

【小白学机器学习36】关于独立概率,联合概率,交叉概率,交叉概率和,总概率等 概念辨析的例子

目录 1 先说结论 2 联合概率 3 边缘概率 4 (行/列)边缘概率的和 总概率1 5 条件概率 5.1 条件概率的除法公式 5.2 条件概率和联合概率区别 1 先说结论 关于独立概率,联合概率,交叉概率,交叉概率和,总概率 类型含义 …...

Spring Boot 项目——分层架构

在创建一个 Spring Boot 项目时,为了提高代码的可维护性、可扩展性和清晰度,通常会按照一定的分层架构进行设计。常见的分层架构包括以下几层: 1. Controller 层(Web 层) 作用:接收用户请求,并…...

wordpress网站首页底部栏显示网站备案信息

一、页脚文件footer.php 例如,wordpress主题使用的是simple-life主题,服务器IP为192.168.68.89,在wordpress主题文件中有个页脚文件footer.php,这是一个包含网站页脚代码的文件。 footer.php 路径如下: /www/wwwroot/192.168.68…...

python面向对象编程练习

学生成绩管理系统 定义一个Student类,包括属性(姓名、成绩)和方法(设置成绩、获取成绩、计算平均成绩)。 实例化多个学生对象并调用方法。 功能说明: Student 类: init(self, name):…...

OpenCV_Code_LOG

孔洞填充 void fillHole(const Mat srcBw, Mat &dstBw) {Size m_Size srcBw.size();Mat TempMat::zeros(m_Size.height2,m_Size.width2,srcBw.type());//延展图像srcBw.copyTo(Temp(Range(1, m_Size.height 1), Range(1, m_Size.width 1)));cv::floodFill(Temp, Point(…...

力扣第 74 题是 搜索二维矩阵

题目描述 给定一个 m x n 的矩阵 matrix 和一个目标值 target,请你编写一个函数来判断目标值 target 是否在矩阵中。 每行的元素按升序排列。每列的元素按升序排列。 示例 1 输入: matrix [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14…...

[极客大挑战 2019]BabySQL--详细解析

信息搜集 进入界面: 输入用户名为admin,密码随便输一个: 发现是GET传参,有username和password两个传参点。 我们测试一下password点位能不能注入: 单引号闭合报错,根据报错信息,我们可以判断…...

实现Linux平台自定义协议族

一 简介 我们常常在Linux系统中编写socket接收TCP/UDP协议数据,大家有没有想过它怎么实现的,如果我们要实现socket接收自定义的协议数据又该怎么做呢?带着这个疑问,我们一起往下看吧~~ 二 Linux内核函数简介 在Linux系统中要想…...

RL78/G15 Fast Prototyping Board Arduino IDE 平台开发过程

这是一篇基于RL78/G15 Fast Prototyping Board的Arduino IDE开发记录 RL78/G15 Fast Prototyping Board硬件简介(背景)基础测试(方法说明/操作说明)开发环境搭建(方法说明/操作说明代码结果)Arduino IDE RL…...

YOLOv11 NCNN安卓部署

YOLOv11 NCNN安卓部署 前言 yolov11 NCNN安卓部署 目前的帧率可以稳定在20帧左右,下面是这个项目的github地址:https://github.com/gaoxumustwin/ncnn-android-yolov11 上面的检测精度很低时因为这个模型只训练了5个epoch,使用3090训练一个…...

对载入的3dtiles进行旋转、平移和缩放变换。

使用 params: {tx: 129.75845, //模型中心X轴坐标(经度,单位:十进制度)//小左ty: 46.6839, //模型中心Y轴坐标(纬度,单位:十进制度)//小下tz: 28, //模型中心Z轴坐标(高…...

Rust个人认为将抢占C和C++市场,逐渐成为主流的开发语言

本人使用C开发8年、C#开发15年、中间使用JAVA开发过项目、后期在学习过程中发现了Rust语言说它是最安全的语言,能够解决C、C的痛点、于是抽出一部分时间网上买书,看网上资料进行学习,这一学习起来发现和其它语言比较起来,在编码的…...

在openEuler中使用top命令

在openEuler中使用top命令 概述 top 命令是Linux系统中最常用的实时性能监控工具之一,允许用户查看系统的整体状态,包括CPU使用率、内存使用情况、运行中的进程等。本文档将详细介绍如何在openEuler操作系统中有效利用top命令进行系统监控。 启动top命令 打开终端并输入t…...

探索文件系统,Python os库是你的瑞士军刀

文章目录 探索文件系统,Python os库是你的瑞士军刀第一部分:背景介绍第二部分:os库是什么?第三部分:如何安装os库?第四部分:简单库函数使用方法1. 获取当前工作目录2. 改变当前工作目录3. 列出目…...

【小白学机器学习41】如何从正态分布的总体中去抽样? 获得指定正态分布的样本的2种方法

目录 1 目标:使用2种方法,去从正态分布的总体中去抽样,获得样本 1.1 step1: 首先,逻辑上需要先有符合正态分布的总体population 1.2 从总体中取得样本,模拟抽样的过程 2 从正态分布抽样的方法1 3 从正态分布抽样…...

将VSCode设置成中文语言环境

目录 VSCode默认是英文语言环境,这对于像我这种英语比较菜的人来说不是那么友好 另外也习惯了用中文,所以接下来介绍下如何将VSCode设置成中文语言环境。 1、打开VSCode软件,按快捷键【CtrlShiftP】 2、在弹出的搜索框中输入【configure l…...

Applied Intelligence投稿

一、关于手稿格式: 1、该期刊是一个二区的,模板使用Springer nature格式, 期刊投稿要求,详细期刊投稿指南,大部分按Soringernature模板即可,图片表格声明参考文献命名要求需注意。 2、参考文献&#xff…...

AI-agent矩阵营销:让品牌传播无处不在

矩阵营销是一种通过多平台联动构建品牌影响力的策略,而 AI-agent 技术让这一策略变得更加智能化。AI社媒引流王凭借其矩阵管理功能,帮助品牌在多个平台上实现深度覆盖与精准传播。 1. 矩阵营销的优势 品牌触达更广:多平台联动可以覆盖不同用…...

【0346】Postgres内核 Startup Process 通过 signal 与 postmaster 交互实现 (5)

1. Startup Process 进程 postmaster 初始化过程中, 在进入 ServerLoop() 函数之前,会先通过调用 StartChildProcess() 函数来开启辅助进程,这些进程的目的主要用来完成数据库的 XLOG 相关处理。 如: 核实 pg_wal 和 pg_wal/archive_status 文件是否存在Postgres先前是否发…...

NSSCTF-做题笔记

[羊城杯 2020]easyre 查壳,无壳,64位,ida打开 encode_one encode_tow encode_three 那么我们开始一步一步解密,从最外层开始 def decode_three(encrypted_str):decrypted_str ""for char in encrypted_str:char_code …...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

Python Einops库:深度学习中的张量操作革命

Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

LangFlow技术架构分析

🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...