2024 ccpc 辽宁省赛 E(构造 思维?)L(二分+一点点数论知识?)
E 题意:

可以注意到:
我的两种方格都四个方格的大小。
所以 如果存在一种摆放方式 那么 4|nm。
再考虑一种特殊的情况 22 ,此时虽然我的积是4 但是无法摆放的。
1>对于 4 | n,或者 4 | m.我直接摆放第二种方格就可以了。
如果我n 是4 的倍数,那么竖着摆放。如果m 是4 的倍数,那么横着摆。
2>对于我n m 都不是4 的倍数的情况。(因为4|nm ,并且我n m 都不是4的倍数。所以n m 都是偶数,(因为每一个数都要贡献出一个2 出来)
我们可以构造出来的最小单元是 26
1 2 2 2 2 3
1 1 1 3 3 3
当m>2的时候。我两行两行的考虑
m至少为6
将原矩阵分成2m 个矩形
当m 大于2 并且不是4的倍数。那么m=4k+6
对分割好的矩形 可以分割成k个24 的矩形和一个2 6的矩形。
当我的m==2 的时候
1 1
1 2
1 2
3 2
3 3
那么我n =4*k+6
和上文类似
我的构思代码
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;void fun1(int x)
{cout << x << " " << x + 1 << " " << x + 1 << " " << x + 1 << " " << x + 1 << " " << x + 2 << " ";return;
}
void fun2(int x)
{cout << x << " " << x << " " << x << " " << x + 2 << " " << x + 2 << " " << x + 2 << " ";return;
}
void fun3(int x)
{cout<<x<<" "<<x<<"\n";cout<<x<<" "<<x+1<<"\n";cout<<x<<" "<<x+1<<"\n";cout<<x+2<<" "<<x+1<<"\n";cout<<x+2<<" "<<x+1<<"\n";cout<<x+2<<" "<<x+2<<"\n";return ;
}
void solve()
{int n, m;cin >> n >> m;if (n == 2 && m == 2){cout << "NO\n";return;}if ((n * m) % 4 != 0){cout << "NO\n";return;}cout << "YES\n";if (n % 4 == 0 || m % 4 == 0){int tot = 0;if (m % 4 == 0){for (int j = 1; j <= n; j++){for (int k = 1; k <= m; k++){if (k % 4 == 1)tot++;cout << tot << " ";}cout << "\n";}}else{int tot = 1;for (int k = 1; k <= n / 4; k++){for (int jj = 1; jj <= 4; jj++){for (int i = tot; i <= tot + m - 1; i++){cout << i << " ";}cout << "\n";}tot += m;}}return;}int tot = 1;if (m==2){int k=(n-6)/4;fun3(tot);tot+=3;for (int i=1;i<=k;i++){for (int k=1;k<=4;k++){cout<<tot<<" "<<tot+1<<"\n";}tot+=2;}return ;}int k = (m - 6) / 4;for (int i = 1; i <= n; i += 2){int t = tot;// 两行 两行处理fun1(t);tot += 3;// 多少个四for (int j = 1; j <= k; j++){for (int kk = 1; kk <= 4; kk++)cout << tot << " ";tot++;}cout << "\n";fun2(t);for (int j = 1; j <= k; j++){for (int kk = 1; kk <= 4; kk++)cout << tot << " ";tot++;}cout << "\n";}
}
int main()
{std::cin.tie(nullptr)->sync_with_stdio(false);int t = 1;cin >> t;while (t--){solve();}return 0;
}
L题意:

一直以为这是什么数论的题。
说到底还是不会枚举啊。读不懂题。真可恶 真可恶!!
1-x 中 是a 的倍数的数字有 x/a 个。(这里我其实是算的 我的x是a 的多少倍。若x/a=k。那么从1-x 中 存在着 a 2a …ka 一共k 个数)
(主要是对这 一句的理解)
n 是4*100^p 的倍数 但是我n 不是 100^{p+1} 的倍数
如果我确定了p.那么我可以用 mid/a-mid/b;
同时要减去1-2024 年的影响。
我的平年 和我的年份 具有单调性。(不降的)
所以我二分年份
因为我的平年至多是1e18 。所以我的p 取到 8 就可以了。4100^p 已经到达了41e16
当我的p 取9 的时候,是 4*1e18,那必然不会出现倍数了
void solve()
{int k;cin >> k;auto check = [&](int mid) -> bool{int ans = 0;for (int i = 0; i <= 8; i++){ans += mid / (4 * qpow(100, i)) - mid / (qpow(100, i + 1));}return (mid - 2024 - (ans - 491)) >= k;};int l = 2025;int r = 2e18;while (l <= r){int mid = l + r >> 1;if (check(mid))r = mid - 1;elsel = mid + 1;}cout << r + 1 << "\n";
}
相关文章:
2024 ccpc 辽宁省赛 E(构造 思维?)L(二分+一点点数论知识?)
E 题意: 可以注意到: 我的两种方格都四个方格的大小。 所以 如果存在一种摆放方式 那么 4|nm。 再考虑一种特殊的情况 22 ,此时虽然我的积是4 但是无法摆放的。 1>对于 4 | n,或者 4 | m.我直接摆放第二种方格就可以了。 如果我n 是4 的…...
【iOS】设计模式的六大原则
【iOS】设计模式的六大原则 文章目录 【iOS】设计模式的六大原则前言开闭原则——OCP单一职能原则——SRP里氏替换原则——LSP依赖倒置原则——DLP接口隔离原则——ISP迪米特法则——LoD小结 前言 笔者这段时间看了一下有关于设计模式的七大原则,下面代码示例均为OC…...
网络安全:攻防技术-Google Hacking的实现及应用
前言 google hacking其实并算不上什么新东西,在早几年我在一些国外站点上就看见过相关的介绍,但是由于当时并没有重视这种技术,认为最多就只是用来找找未改名的mdb或者别人留下的webshell什么的,并无太大实际用途。但是前段时间仔…...
输入一行字符,分别统计出其中英文字母、空格、数字和其它字符的个数。-多语言
目录 C 语言实现 Python 实现 Java 实现 Js 实现 Ts 实现 题目:输入一行字符,分别统计出其中英文字母、空格、数字和其它字符的个数。 程序分析:利用while语句,条件为输入的字符不为\n。 C 语言实现 #include <stdio.h>int mai…...
2-2-18-9 QNX系统架构之文件系统(三)
阅读前言 本文以QNX系统官方的文档英文原版资料为参考,翻译和逐句校对后,对QNX操作系统的相关概念进行了深度整理,旨在帮助想要了解QNX的读者及开发者可以快速阅读,而不必查看晦涩难懂的英文原文,这些文章将会作为一个…...
各大浏览器(如Chrome、Firefox、Edge、Safari)的对比
浏览器如Chrome、Firefox、Edge等在功能、性能、隐私保护等方面各有特点。以下是对这些浏览器的详细对比,帮助你选择合适的浏览器。 1. Google Chrome 市场份额:Chrome是目前市场上最流行的浏览器,约占全球浏览器市场的65%以上。 性能&#…...
nginx搭建直播推流服务
文章目录 学习链接步骤使用nginx搭建直播推流服务安装依赖库下载nginx-http-flv-module模块下载nginx解压nginx,进入nginx目录设置nginx编译配置编译并安装配置nginx rtmp服务启动nginx 准备另外一台电脑下载OBS下载OBS windows | linux 安装vlc观看直播flv协议hls协…...
单片机-- 松瀚sonix学习过程
硬件:松瀚sn8f5701sg、SN-LINK 3 Adapter模拟器、sn-link转接板 软件: keil-c51(v9.60):建立工程,编辑,烧录程序 SN-Link_Driver for Keil C51_V3.00.005:安装sonix设备包和snlin…...
循环神经网络:从基础到应用的深度解析
🍛循环神经网络(RNN)概述 循环神经网络(Recurrent Neural Network, RNN)是一种能够处理时序数据或序列数据的深度学习模型。不同于传统的前馈神经网络,RNN具有内存单元,能够捕捉序列中前后信息…...
从扩散模型开始的生成模型范式演变--SDE
SDE是在分数生成模型的基础上,将加噪过程扩展时连续、无限状态,使得扩散模型的正向、逆向过程通过SDE表示。在前文讲解DDPM后,本文主要讲解SDE扩散模型原理。本文内容主要来自B站Up主deep_thoughts分享视频Score Diffusion Model分数扩散模型…...
【python使用kazoo连ZooKeeper基础使用】
from kazoo.client import KazooClient, KazooState from kazoo.exceptions import NoNodeError,NodeExistsError,NotEmptyError import json# 创建 KazooClient 实例,连接到 ZooKeeper 服务器 zk KazooClient(hosts127.0.0.1:2181) zk.start()# 定义节点路径 path…...
【设计模式系列】解释器模式(十七)
一、什么是解释器模式 解释器模式(Interpreter Pattern)是一种行为型设计模式,它的核心思想是分离实现与解释执行。它用于定义语言的文法规则,并解释执行语言中的表达式。这种模式通常是将每个表达式抽象成一个类,并通…...
只出现一次的数字
只出现一次的数字 给你一个 非空 整数数组 nums ,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。 示例 1 ÿ…...
SpringMVC-08-json
8. Json 8.1. 什么是Json JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式,目前使用特别广泛。采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言。易于人阅读和编写…...
技术文档的语言表达
技术文档的语言表达 在这个瞬息万变的技术世界中,了解如何撰写有效的技术文档显得尤为重要。无论是开发团队还是最终用户,清晰、简洁且有条理的文档都是连接各方的桥梁。本文将深入探讨技术文档的语言表达,从其重要性、写作原则到各种类型&a…...
UEFI 事件
UEFI 不再支持中断(准确地说,UEFI 不再为开发者提供中断支持,但在UEFI内部还是使用了时钟中断),所有的异步操作都要通过事件(Event)来完成。 启动服务为开发者提供了用于操作事件、定时器及TPL…...
大师开讲-图形学领域顶级专家王锐开讲Vulkan、VSG开源引擎
王锐,毕业于清华大学,图形学领域顶级专家,开源技术社区的贡献者与推广者。三维引擎OpenSceneGraph的核心基石开发者与维护者,倾斜摄影数据格式osgb的发明人。著有《OpenSceneGraph 3 Cookbook》,《OpenSceneGraph 3 Beginers Guid…...
小F的矩阵值调整
问题描述 小F得到了一个矩阵。如果矩阵中某一个格子的值是偶数,则该值变为它的三倍;如果是奇数,则保持不变。小F想知道调整后的矩阵是什么样子的。 测试样例 样例1: 输入:a [[1, 2, 3], [4, 5, 6]] 输出:…...
ORB-SLAM2 ----- LocalMapping::SearchInNeighbors()
文章目录 一、函数意义二、函数讲解三、函数代码四、本函数使用的匹配方法ORBmatcher::Fuse()1. 函数讲解2. 函数代码 四、总结 一、函数意义 本函数是用于地图点融合的函数,前面的函数生成了新的地图点,但这些地图点可能在前面的关键帧中已经生成过了&a…...
给UE5优化一丢丢编辑器性能
背后的原理 先看FActorIterator的定义 /*** Actor iterator* Note that when Playing In Editor, this will find actors only in CurrentWorld*/ class FActorIterator : public TActorIteratorBase<FActorIterator> {//..... }找到基类TActorIteratorBase /*** Temp…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
