当前位置: 首页 > news >正文

浅谈人工智能之基于容器云进行图生视频大模型搭建

浅谈人工智能之基于容器云进行图生视频大模型搭建

根据之前我们所讲过的内容:
文生图
文生视频
我们继续讲解图生视频大模型搭建。

引言

随着深度学习技术的不断发展,图生视频(image-to-video)大模型成为了计算机视觉和自然语言处理领域的一个研究热点。图生视频模型可以根据输入的文本描述生成高质量的视频,广泛应用于艺术创作、广告设计、虚拟现实等领域。本文将介绍如何搭建一个基于iic/Image-to-Video的文生视频大模型。

模型效果展示

我们首先看一下我们对搭建好的模型的效果进行展示,我们输入的图片如下:
在这里插入图片描述## 环境搭建
基于上一篇文生图的模型搭建,我们进行文生视频的搭建。
第一步:依赖安装

pip install modelscope==1.8.4
pip install xformers==0.0.20
pip install torch==2.0.1
pip install open_clip_torch>=2.0.2
pip install opencv-python-headless
pip install opencv-python 
pip install einops>=0.4
pip install rotary-embedding-torch
pip install fairscale 
pip install scipy
pip install imageio
pip install pytorch-lightning
pip install torchsde

第二步:模型下载调用

from modelscope.pipelines import pipeline
from modelscope.outputs import OutputKeyspipe = pipeline(task="image-to-video", model='damo/Image-to-Video', model_revision='v1.1.0', device='cuda:0')# IMG_PATH: your image path (url or local file)
output_video_path = pipe("/root/image.jpg", output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO]
print(output_video_path)

第三步:大概率情况下会提示没有安装ffmpeg提示

2024-11-26 17:10:12,990 - modelscope - ERROR - Save Video Error with /bin/sh: 1: ffmpeg: not found
2024-11-26 17:10:12,996 - modelscope - WARNING - task image-to-video output keys are missing

第四步:安装ffmpeg

sudo apt update
sudo apt install ffmpeg

第五步:再次跑py脚本,我就可以获得对应的输出视频了,如果上述跑脚本的时候提示缺少对应依赖,根据提示信息再对对应依赖进行安装部署。

相关文章:

浅谈人工智能之基于容器云进行图生视频大模型搭建

浅谈人工智能之基于容器云进行图生视频大模型搭建 根据之前我们所讲过的内容: 文生图 文生视频 我们继续讲解图生视频大模型搭建。 引言 随着深度学习技术的不断发展,图生视频(image-to-video)大模型成为了计算机视觉和自然语言…...

大型复杂项目管理怎么结合传统与敏捷

大型复杂项目管理需要综合运用传统的瀑布模型与敏捷方法,两者各具优势,可以在不同的项目阶段和需求下发挥最大效能。首先,在项目的初期阶段,传统方法的详细规划和需求分析能够帮助确保项目方向正确、资源充足;敏捷方法…...

家校通小程序实战教程04教师管理

目录 1 创建数据源2 搭建管理后台3 搭建查询条件4 功能测试总结 我们上一篇介绍了如何将学生加入班级,学生加入之后就需要教师加入了。教师分为任课老师和班主任,班主任相当于一个班级的管理员,日常可以发布各种任务,发布接龙&…...

UI控件使用说明

文章目录 一、控件的公共属性二、常用控件的私有属性三、控件的显示与隐藏 一、控件的公共属性 struct element {u32 highlight: 1; //高亮标志u32 state: 3; //内核记录控件的状态u32 ref: 5; //内核计数值u32 prj: 3; //工程序号u32 hide_action: 1; //HIDE_WI…...

树莓派2安装jupyterlab以便更好的编程体验

树莓派2 是一款很老的开发板了,但是它还能继续战斗。为了更好的编程体验,准备安装jupyterlab 安装jupyterlab 使用命令: pip install jupyterlab 该过程非常漫长,因为树莓派2是很老的板子,它需要安装一些arm7版本的…...

计算机网络常见面试题总结(上)

计算机网络基础 网络分层模型 OSI 七层模型是什么?每一层的作用是什么? OSI 七层模型 是国际标准化组织提出的一个网络分层模型,其大体结构以及每一层提供的功能如下图所示: 每一层都专注做一件事情,并且每一层都需…...

k8s 亲和性之Affinity

文章目录 1. Node Affinity(节点亲和性)节点亲和性类型配置示例常见场景: 2. Pod Affinity 和 Pod Anti-AffinityPod Affinity 配置示例Pod Anti-Affinity 配置示例常见场景: 3. 亲和性规则概述4. 亲和性和反亲和性的细节5. 亲和性…...

SpringBoot 插件化开发模式

一、前言 1.1 使用插件的好处 1.1.1 模块解耦 实现服务模块之间解耦的方式有很多,但是插件来说,其解耦的程度似乎更高,而且更灵活,可定制化、个性化更好。 举例来说,代码中可以使用设计模式来选择使用哪种方式发送…...

基于树莓派的安保巡逻机器人--项目介绍

目录 一、项目简介 二、项目背景 三、作品研发技术方案 作品主要内容: 方案的科学性 设计的合理性 四、作品创新性及特点 五、作品自我评价 本篇为项目“基于树莓派的安保巡逻机器人”介绍博客 演示视频链接: 基于树莓派的安保巡逻机器人_音游…...

Python学习笔记8-函数1

自定义函数 def 函数名(形参):函数体return 空/变量/对象/表达式 形参:函数定义时声明的参数实参:函数调用时传入的参数。函数只需要定义一次,就可以被多次使用当函数被调用时,才执行函数体,定义时不执行 文档注释 …...

如何使用ST7789展现图片?[ESP--4]

本节我们继续ESP和ST 7789的话题,这节课我们来学学如何展示图片,话不多说,先上效果 好,教程开始~前情提要,要看懂这篇,建议搭配楼主的前两期文章 使用ESP32驱动LCD-ST7789屏幕[ESP–2] 加速你的LCD-ST7789屏幕&#xf…...

【QNX+Android虚拟化方案】129 - USB眼图参数配置

【QNX+Android虚拟化方案】129 - USB眼图参数配置 1. 软件侧dts如何配置眼图参数 及 其对应关系2. 硬件 QNX 侧调试眼图命令2.1 High Speed USB2.0 Host2.2 Super Speed USB3.0 Host3. 硬件 Android 侧调试眼图命令基于原生纯净代码,自学总结 纯技术分享,不会也不敢涉项目、不…...

【机器学习】探索机器学习决策树算法的奥秘

决策树 前言基本概念常见的决策树算法ID3算法C4.5算法CART算法 决策树的优缺点应用场景决策树的可视化总结 前言 在当今这个数据驱动的时代,机器学习作为数据分析与预测的利器,正以前所未有的速度改变着我们的生活和工作方式。在众多机器学习算法中&…...

K8S版本和istio版本的对照关系

版本对照关系 下载地址1 下载地址2...

嵌入式硬件实战提升篇(三)商用量产电源设计方案 三路电源输入设计 电源管理 多输入供电自动管理 DCDC降压

引言:本文你能实际的了解到实战量产产品中电源架构设计的要求和过程,并且从实际实践出发搞懂电源架构系统,你也可以模仿此架构抄板到你自己的项目,并结合硬件篇之前的项目以及理论形成正真的三路电源输入设计与开发板电源架构块供…...

【机器学习】机器学习的基本分类-监督学习-逻辑回归-Sigmoid 函数

Sigmoid 函数是一种常用的激活函数,尤其在神经网络和逻辑回归中扮演重要角色。它将输入的实数映射到区间 (0, 1),形状类似于字母 "S"。 1. 定义与公式 Sigmoid 函数的公式为: 特点 输出范围:(0, 1),适合用…...

EasyDarwin搭建直播推流服务

学习链接 easydarwin官网 - 这里看介绍 easydarwin软件下载地址 - 百度网盘 easydarwin视频 B站 文章目录 学习链接使用下载EasyDarwin压缩包,并解压到目录启动EasyDarwin点播直播easyplayer.jsapidocffmpeg推流rtsp & ffplay拉流 使用 下载EasyDarwin压缩包…...

无人机数据处理系统:原理与核心系统

一、数据处理系统的运行原理 数据获取:无人机在飞行过程中,通过搭载的传感器(如相机、激光雷达等)采集到各种类型的数据,例如图像、点云等。这些数据是后续处理和分析的基础。 数据传输:采集到的数据会通…...

DLL中的inline static成员变量:Windows开发中的常见陷阱

在Windows平台进行C开发时,DLL(动态链接库)是一个非常重要的概念。它让我们能够实现代码的模块化和动态加载,提高了程序的灵活性和维护性。然而,当我们在DLL中使用C17引入的inline static成员变量时,可能会…...

pandas 读写excel

在Python中,使用Pandas库读写Excel文件是一个常见的操作。Pandas提供了read_excel和to_excel方法来分别实现读取和写入Excel文件的功能。以下是一些基本的示例: ### 读取Excel文件 python import pandas as pd # 读取Excel文件 df pd.read_excel(pat…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

PHP和Node.js哪个更爽?

先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...