stm32内部高速晶振打开作为主时钟
首先建议你别这么干,因为内部晶振特别容易受温度等外界影响,很容易卡死或堵死程序
我是因为没画外部晶振电路,所以只能开内部晶振来作为时钟
适用于stm32f103系列
把下面的代码换掉源文件里的时钟源配置
/* 开启HSI 即内部晶振时钟 */RCC->CR |= (uint32_t)0x00000001;
// RCC_DeInit();
// RCC_HSEConfig(RCC_HSE_ON); //使能内部时钟 HSI/*选择HSI为PLL的时钟源HSI必须2分频给PLL*/RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2; /*PLLCLK=8/2*9=36MHz 设置倍频得到时钟源PLL的频率*/RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL9;/* PLL不分频输出 */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* 使能 PLL时钟 */RCC->CR |= RCC_CR_PLLON;/* 等待PLL时钟就绪*/while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* 选择PLL为系统时钟的时钟源 */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* 等到PLL成为系统时钟的时钟源*/while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}
我的时钟配置文件
system_stm32f10x.c
/********************************************************************************* @file system_stm32f10x.c* @author MCD Application Team* @version V3.5.0* @date 11-March-2011* @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.* * 1. This file provides two functions and one global variable to be called from * user application:* - SystemInit(): Setups the system clock (System clock source, PLL Multiplier* factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside* the "startup_stm32f10x_xx.s" file.** - SystemCoreClock variable: Contains the core clock (HCLK), it can be used* by the user application to setup the SysTick * timer or configure other parameters.* * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must* be called whenever the core clock is changed* during program execution.** 2. After each device reset the HSI (8 MHz) is used as system clock source.* Then SystemInit() function is called, in "startup_stm32f10x_xx.s" file, to* configure the system clock before to branch to main program.** 3. If the system clock source selected by user fails to startup, the SystemInit()* function will do nothing and HSI still used as system clock source. User can * add some code to deal with this issue inside the SetSysClock() function.** 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depedning on* the product used), refer to "HSE_VALUE" define in "stm32f10x.h" file. * When HSE is used as system clock source, directly or through PLL, and you* are using different crystal you have to adapt the HSE value to your own* configuration.* ******************************************************************************* @attention** THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.** <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>*******************************************************************************//** @addtogroup CMSIS* @{*//** @addtogroup stm32f10x_system* @{*/ /** @addtogroup STM32F10x_System_Private_Includes* @{*/#include "stm32f10x.h"/*** @}*//** @addtogroup STM32F10x_System_Private_TypesDefinitions* @{*//*** @}*//** @addtogroup STM32F10x_System_Private_Defines* @{*//*!< Uncomment the line corresponding to the desired System clock (SYSCLK)frequency (after reset the HSI is used as SYSCLK source)IMPORTANT NOTE:============== 1. After each device reset the HSI is used as System clock source.2. Please make sure that the selected System clock doesn't exceed your device'smaximum frequency.3. If none of the define below is enabled, the HSI is used as System clocksource.4. The System clock configuration functions provided within this file assume that:- For Low, Medium and High density Value line devices an external 8MHz crystal is used to drive the System clock.- For Low, Medium and High density devices an external 8MHz crystal isused to drive the System clock.- For Connectivity line devices an external 25MHz crystal is used to drivethe System clock.If you are using different crystal you have to adapt those functions accordingly.*/#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* #define SYSCLK_FREQ_HSE HSE_VALUE */#define SYSCLK_FREQ_24MHz 24000000
#else
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
/* #define SYSCLK_FREQ_24MHz 24000000 */
/* #define SYSCLK_FREQ_36MHz 36000000 */
/* #define SYSCLK_FREQ_48MHz 48000000 */
/* #define SYSCLK_FREQ_56MHz 56000000 */
#define SYSCLK_FREQ_72MHz 72000000
#endif/*!< Uncomment the following line if you need to use external SRAM mountedon STM3210E-EVAL board (STM32 High density and XL-density devices) or on STM32100E-EVAL board (STM32 High-density value line devices) as data memory */
#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)
/* #define DATA_IN_ExtSRAM */
#endif/*!< Uncomment the following line if you need to relocate your vector Table inInternal SRAM. */
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. *//*** @}*//** @addtogroup STM32F10x_System_Private_Macros* @{*//*** @}*//** @addtogroup STM32F10x_System_Private_Variables* @{*//*******************************************************************************
* Clock Definitions
*******************************************************************************/
#ifdef SYSCLK_FREQ_HSEuint32_t SystemCoreClock = SYSCLK_FREQ_HSE; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_24MHzuint32_t SystemCoreClock = SYSCLK_FREQ_24MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_36MHzuint32_t SystemCoreClock = SYSCLK_FREQ_36MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_48MHzuint32_t SystemCoreClock = SYSCLK_FREQ_48MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_56MHzuint32_t SystemCoreClock = SYSCLK_FREQ_56MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_72MHzuint32_t SystemCoreClock = SYSCLK_FREQ_72MHz; /*!< System Clock Frequency (Core Clock) */
#else /*!< HSI Selected as System Clock source */uint32_t SystemCoreClock = HSI_VALUE; /*!< System Clock Frequency (Core Clock) */
#endif__I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
/*** @}*//** @addtogroup STM32F10x_System_Private_FunctionPrototypes* @{*/static void SetSysClock(void);#ifdef SYSCLK_FREQ_HSEstatic void SetSysClockToHSE(void);
#elif defined SYSCLK_FREQ_24MHzstatic void SetSysClockTo24(void);
#elif defined SYSCLK_FREQ_36MHzstatic void SetSysClockTo36(void);
#elif defined SYSCLK_FREQ_48MHzstatic void SetSysClockTo48(void);
#elif defined SYSCLK_FREQ_56MHzstatic void SetSysClockTo56(void);
#elif defined SYSCLK_FREQ_72MHzstatic void SetSysClockTo72(void);
#endif#ifdef DATA_IN_ExtSRAMstatic void SystemInit_ExtMemCtl(void);
#endif /* DATA_IN_ExtSRAM *//*** @}*//** @addtogroup STM32F10x_System_Private_Functions* @{*//*** @brief Setup the microcontroller system* Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable.* @note This function should be used only after reset.* @param None* @retval None*/
void SystemInit (void)
{
#ifdef USE_HSE_CLOCK /* Reset the RCC clock configuration to the default reset state(for debug purpose) *//* Set HSION bit */RCC->CR |= (uint32_t)0x00000001;/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CLRCC->CFGR &= (uint32_t)0xF8FF0000;
#elseRCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */ /* Reset HSEON, CSSON and PLLON bits */RCC->CR &= (uint32_t)0xFEF6FFFF;/* Reset HSEBYP bit */RCC->CR &= (uint32_t)0xFFFBFFFF;/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */RCC->CFGR &= (uint32_t)0xFF80FFFF;#ifdef STM32F10X_CL/* Reset PLL2ON and PLL3ON bits */RCC->CR &= (uint32_t)0xEBFFFFFF;/* Disable all interrupts and clear pending bits */RCC->CIR = 0x00FF0000;/* Reset CFGR2 register */RCC->CFGR2 = 0x00000000;
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)/* Disable all interrupts and clear pending bits */RCC->CIR = 0x009F0000;/* Reset CFGR2 register */RCC->CFGR2 = 0x00000000;
#else/* Disable all interrupts and clear pending bits */RCC->CIR = 0x009F0000;
#endif /* STM32F10X_CL */#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)#ifdef DATA_IN_ExtSRAMSystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */
#endif /* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers *//* Configure the Flash Latency cycles and enable prefetch buffer */SetSysClock();#ifdef VECT_TAB_SRAMSCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#elseSCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif
#else
/* 开启HSI 即内部晶振时钟 */RCC->CR |= (uint32_t)0x00000001;
// RCC_DeInit();
// RCC_HSEConfig(RCC_HSE_ON); //使能内部时钟 HSI/*选择HSI为PLL的时钟源HSI必须2分频给PLL*/RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2; /*PLLCLK=8/2*9=36MHz 设置倍频得到时钟源PLL的频率*/RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL9;/* PLL不分频输出 */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* 使能 PLL时钟 */RCC->CR |= RCC_CR_PLLON;/* 等待PLL时钟就绪*/while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* 选择PLL为系统时钟的时钟源 */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* 等到PLL成为系统时钟的时钟源*/while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}
#endif
}/*** @brief Update SystemCoreClock variable according to Clock Register Values.* The SystemCoreClock variable contains the core clock (HCLK), it can* be used by the user application to setup the SysTick timer or configure* other parameters.* * @note Each time the core clock (HCLK) changes, this function must be called* to update SystemCoreClock variable value. Otherwise, any configuration* based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source:* * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)* * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)* * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors.* * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value* 8 MHz) but the real value may vary depending on the variations* in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value* 8 MHz or 25 MHz, depedning on the product used), user has to ensure* that HSE_VALUE is same as the real frequency of the crystal used.* Otherwise, this function may have wrong result.* * - The result of this function could be not correct when using fractional* value for HSE crystal.* @param None* @retval None*/
void SystemCoreClockUpdate (void)
{uint32_t tmp = 0, pllmull = 0, pllsource = 0;#ifdef STM32F10X_CLuint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0;
#endif /* STM32F10X_CL */#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)uint32_t prediv1factor = 0;
#endif /* STM32F10X_LD_VL or STM32F10X_MD_VL or STM32F10X_HD_VL *//* Get SYSCLK source -------------------------------------------------------*/tmp = RCC->CFGR & RCC_CFGR_SWS;switch (tmp){case 0x00: /* HSI used as system clock */SystemCoreClock = HSI_VALUE;break;case 0x04: /* HSE used as system clock */SystemCoreClock = HSE_VALUE;break;case 0x08: /* PLL used as system clock *//* Get PLL clock source and multiplication factor ----------------------*/pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;#ifndef STM32F10X_CL pllmull = ( pllmull >> 18) + 2;if (pllsource == 0x00){/* HSI oscillator clock divided by 2 selected as PLL clock entry */SystemCoreClock = (HSI_VALUE >> 1) * pllmull;}else{#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;/* HSE oscillator clock selected as PREDIV1 clock entry */SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else/* HSE selected as PLL clock entry */if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET){/* HSE oscillator clock divided by 2 */SystemCoreClock = (HSE_VALUE >> 1) * pllmull;}else{SystemCoreClock = HSE_VALUE * pllmull;}#endif}
#elsepllmull = pllmull >> 18;if (pllmull != 0x0D){pllmull += 2;}else{ /* PLL multiplication factor = PLL input clock * 6.5 */pllmull = 13 / 2; }if (pllsource == 0x00){/* HSI oscillator clock divided by 2 selected as PLL clock entry */SystemCoreClock = (HSI_VALUE >> 1) * pllmull;}else{/* PREDIV1 selected as PLL clock entry *//* Get PREDIV1 clock source and division factor */prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;if (prediv1source == 0){ /* HSE oscillator clock selected as PREDIV1 clock entry */SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; }else{/* PLL2 clock selected as PREDIV1 clock entry *//* Get PREDIV2 division factor and PLL2 multiplication factor */prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1;pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; }}
#endif /* STM32F10X_CL */ break;default:SystemCoreClock = HSI_VALUE;break;}/* Compute HCLK clock frequency ----------------*//* Get HCLK prescaler */tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];/* HCLK clock frequency */SystemCoreClock >>= tmp;
}/*** @brief Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers.* @param None* @retval None*/
static void SetSysClock(void)
{
#ifdef SYSCLK_FREQ_HSESetSysClockToHSE();
#elif defined SYSCLK_FREQ_24MHzSetSysClockTo24();
#elif defined SYSCLK_FREQ_36MHzSetSysClockTo36();
#elif defined SYSCLK_FREQ_48MHzSetSysClockTo48();
#elif defined SYSCLK_FREQ_56MHzSetSysClockTo56();
#elif defined SYSCLK_FREQ_72MHzSetSysClockTo72();
#endif/* If none of the define above is enabled, the HSI is used as System clocksource (default after reset) */
}/*** @brief Setup the external memory controller. Called in startup_stm32f10x.s * before jump to __main* @param None* @retval None*/
#ifdef DATA_IN_ExtSRAM
/*** @brief Setup the external memory controller. * Called in startup_stm32f10x_xx.s/.c before jump to main.* This function configures the external SRAM mounted on STM3210E-EVAL* board (STM32 High density devices). This SRAM will be used as program* data memory (including heap and stack).* @param None* @retval None*/
void SystemInit_ExtMemCtl(void)
{
/*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses *//* Enable FSMC clock */RCC->AHBENR = 0x00000114;/* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0;/* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/
/*---------------- SRAM Address lines configuration -------------------------*/
/*---------------- NOE and NWE configuration --------------------------------*/
/*---------------- NE3 configuration ----------------------------------------*/
/*---------------- NBL0, NBL1 configuration ---------------------------------*/GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB;GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB;GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444;GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x44444B44;/*---------------- FSMC Configuration ---------------------------------------*/
/*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/FSMC_Bank1->BTCR[4] = 0x00001011;FSMC_Bank1->BTCR[5] = 0x00000200;
}
#endif /* DATA_IN_ExtSRAM */#ifdef SYSCLK_FREQ_HSE
/*** @brief Selects HSE as System clock source and configure HCLK, PCLK2* and PCLK1 prescalers.* @note This function should be used only after reset.* @param None* @retval None*/
static void SetSysClockToHSE(void)
{__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;} if (HSEStatus == (uint32_t)0x01){#if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL && !defined STM32F10X_HD_VL/* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 0 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);#ifndef STM32F10X_CLFLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0;
#elseif (HSE_VALUE <= 24000000){FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0;}else{FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_1;}
#endif /* STM32F10X_CL */
#endif/* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1;/* Select HSE as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_HSE; /* Wait till HSE is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x04){}}else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
}
#elif defined SYSCLK_FREQ_24MHz
/*** @brief Sets System clock frequency to 24MHz and configure HCLK, PCLK2 * and PCLK1 prescalers.* @note This function should be used only after reset.* @param None* @retval None*/
static void SetSysClockTo24(void)
{__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;} if (HSEStatus == (uint32_t)0x01){
#if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL && !defined STM32F10X_HD_VL /* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 0 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0;
#endif/* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1;#ifdef STM32F10X_CL/* Configure PLLs ------------------------------------------------------*//* PLL configuration: PLLCLK = PREDIV1 * 6 = 24 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLMULL6); /* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz *//* PREDIV1 configuration: PREDIV1CLK = PLL2 / 10 = 4 MHz */ RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV10);/* Enable PLL2 */RCC->CR |= RCC_CR_PLL2ON;/* Wait till PLL2 is ready */while((RCC->CR & RCC_CR_PLL2RDY) == 0){}
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)/* PLL configuration: = (HSE / 2) * 6 = 24 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLXTPRE_PREDIV1_Div2 | RCC_CFGR_PLLMULL6);
#else /* PLL configuration: = (HSE / 2) * 6 = 24 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLXTPRE_HSE_Div2 | RCC_CFGR_PLLMULL6);
#endif /* STM32F10X_CL *//* Enable PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Select PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}}else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
}
#elif defined SYSCLK_FREQ_36MHz
/*** @brief Sets System clock frequency to 36MHz and configure HCLK, PCLK2 * and PCLK1 prescalers. * @note This function should be used only after reset.* @param None* @retval None*/
static void SetSysClockTo36(void)
{__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;} if (HSEStatus == (uint32_t)0x01){/* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 1 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_1; /* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1;#ifdef STM32F10X_CL/* Configure PLLs ------------------------------------------------------*//* PLL configuration: PLLCLK = PREDIV1 * 9 = 36 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLMULL9); /*!< PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz *//* PREDIV1 configuration: PREDIV1CLK = PLL2 / 10 = 4 MHz */RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV10);/* Enable PLL2 */RCC->CR |= RCC_CR_PLL2ON;/* Wait till PLL2 is ready */while((RCC->CR & RCC_CR_PLL2RDY) == 0){}#else /* PLL configuration: PLLCLK = (HSE / 2) * 9 = 36 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLXTPRE_HSE_Div2 | RCC_CFGR_PLLMULL9);
#endif /* STM32F10X_CL *//* Enable PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Select PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}}else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
}
#elif defined SYSCLK_FREQ_48MHz
/*** @brief Sets System clock frequency to 48MHz and configure HCLK, PCLK2 * and PCLK1 prescalers. * @note This function should be used only after reset.* @param None* @retval None*/
static void SetSysClockTo48(void)
{__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;} if (HSEStatus == (uint32_t)0x01){/* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 1 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_1; /* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;#ifdef STM32F10X_CL/* Configure PLLs ------------------------------------------------------*//* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz *//* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);/* Enable PLL2 */RCC->CR |= RCC_CR_PLL2ON;/* Wait till PLL2 is ready */while((RCC->CR & RCC_CR_PLL2RDY) == 0){}/* PLL configuration: PLLCLK = PREDIV1 * 6 = 48 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLMULL6);
#else /* PLL configuration: PLLCLK = HSE * 6 = 48 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL6);
#endif /* STM32F10X_CL *//* Enable PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Select PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}}else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
}#elif defined SYSCLK_FREQ_56MHz
/*** @brief Sets System clock frequency to 56MHz and configure HCLK, PCLK2 * and PCLK1 prescalers. * @note This function should be used only after reset.* @param None* @retval None*/
static void SetSysClockTo56(void)
{__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;} if (HSEStatus == (uint32_t)0x01){/* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 2 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2; /* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;#ifdef STM32F10X_CL/* Configure PLLs ------------------------------------------------------*//* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz *//* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);/* Enable PLL2 */RCC->CR |= RCC_CR_PLL2ON;/* Wait till PLL2 is ready */while((RCC->CR & RCC_CR_PLL2RDY) == 0){}/* PLL configuration: PLLCLK = PREDIV1 * 7 = 56 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLMULL7);
#else /* PLL configuration: PLLCLK = HSE * 7 = 56 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL7);#endif /* STM32F10X_CL *//* Enable PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Select PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}}else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
}#elif defined SYSCLK_FREQ_72MHz
/*** @brief Sets System clock frequency to 72MHz and configure HCLK, PCLK2 * and PCLK1 prescalers. * @note This function should be used only after reset.* @param None* @retval None*/
static void SetSysClockTo72(void)
{__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;} if (HSEStatus == (uint32_t)0x01){/* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 2 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2; /* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;#ifdef STM32F10X_CL/* Configure PLLs ------------------------------------------------------*//* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz *//* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);/* Enable PLL2 */RCC->CR |= RCC_CR_PLL2ON;/* Wait till PLL2 is ready */while((RCC->CR & RCC_CR_PLL2RDY) == 0){}/* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLMULL9);
#else /* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
#endif /* STM32F10X_CL *//* Enable PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Select PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}}else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
}
#endif/*** @}*//*** @}*//*** @}*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
相关文章:
stm32内部高速晶振打开作为主时钟
首先建议你别这么干,因为内部晶振特别容易受温度等外界影响,很容易卡死或堵死程序 我是因为没画外部晶振电路,所以只能开内部晶振来作为时钟 适用于stm32f103系列 把下面的代码换掉源文件里的时钟源配置 /* 开启HSI 即内部晶振时钟 */RCC…...
【分页查询】.NET开源 ORM 框架 SqlSugar 系列
.NET开源 ORM 框架 SqlSugar 系列 【开篇】.NET开源 ORM 框架 SqlSugar 系列【入门必看】.NET开源 ORM 框架 SqlSugar 系列【实体配置】.NET开源 ORM 框架 SqlSugar 系列【Db First】.NET开源 ORM 框架 SqlSugar 系列【Code First】.NET开源 ORM 框架 SqlSugar 系列【数据事务…...
【CSS in Depth 2 精译_061】9.4 CSS 中的模式库 + 9.5 本章小结
当前内容所在位置(可进入专栏查看其他译好的章节内容) 【第九章 CSS 的模块化与作用域】 ✔️ 9.1 模块的定义 9.1.1 模块和全局样式9.1.2 一个简单的 CSS 模块9.1.3 模块的变体9.1.4 多元素模块 9.2 将模块组合为更大的结构 9.2.1 模块中多个职责的拆分…...
惠普电脑切换默认F1至F12快捷键,FN切换
发现新买的惠普电脑,按F1至F12发现是快捷功能键,而按fnF1至F12才是windows的功能键和正常我自己使用的电脑刚好相反,实在太不方便了。 解决办法需要进入biso里面去把功能键模式选中给关掉,才能恢复回来...
计算机的错误计算(一百七十)
摘要 回复一中学生来信,探讨 MATLAB 关于算式 的计算问题。 在计算机的错误计算(一百三十二)中,我们探讨了手持式计算器关于算式 的计算问题。一中学生来信询问该算式在数学软件中是否会出错。 例1. 在 MATLAB 中计算 . 首…...
Python `async def` 函数中使用 `yield` 和 `return` 的区别
Python async def 函数中使用 yield 和 return 的区别 1. return 的使用示例代码输出结果解释 2. yield 的使用示例代码输出结果解释 3. 总结 在 Python 中,async def 函数用于定义异步函数,这些函数可以在执行过程中暂停和恢复,通常与 await…...
JAVA修饰符
JAVA 修饰符...
Java 单例模式:深度解析与应用
在软件开发领域,设计模式是解决常见设计问题的有效方案,而单例模式作为创建型设计模式中的一员,其重要性不容小觑。它能够确保一个类仅有一个实例,并提供全局访问点,这一特性在资源管理、配置信息读取、线程池管理以及…...
软件质量保证——单元测试之白盒技术
笔记内容及图片整理自XJTUSE “软件质量保证” 课程ppt,仅供学习交流使用,谢谢。 程序图 程序图定义 程序图P(V,E),V是节点的集合(节点是程序中的语句或语句片段),E是有向边的集合…...
Vue0-生命周期-03
生命周期 生命周期指定就是一个对象从创建到销毁的整个过程。 Vue也是有的 完整的Vue周期包含8个阶段。 Vue官方生命周期流程图: 那这有什么用呢?我们可以在指定阶段做特殊的事件。 这些方法伴随生命周期的进行自动执行。 <!DOCTYPE html> <…...
Flutter:页面滚动
1、单一页面,没有列表没分页的,推荐使用:SingleChildScrollView() return Scaffold(backgroundColor: Color(0xffF6F6F6),body: SingleChildScrollView(child: _buildView()) );2、列表没分页,如购物车页,每个item之间…...
【CameraPoseRefinement】以BARF为例介绍三维重建中的位姿优化
文章目录 IntroductionApproachPlanar Image Alignment(2D)Neural Radiance Fields (3D)Bundle-Adjusting Neural Radiance Fields Experiment平面图像对齐的定性实验合成场景上的定量实验 Introduction 在计算机视觉三维重建中,求解3D场景的表示和定位给定的相机帧…...
YOLO系列论文综述(从YOLOv1到YOLOv11)【第13篇:YOLOv10——实时端到端物体检测】
YOLOv10 1 摘要2 网络结构3 YOLOv1-v10对比 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】【第2篇:YOLO系列论文、代码和主要优缺点汇总】【第3篇:YOLOv1——YOLO的开山之作】【第4篇:…...
多数元素
多数元素 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 示例 1: 输入:nums [3,2,3] 输出ÿ…...
EasyDSS视频推拉流技术的应用与安防摄像机视频采集参数
安防摄像机的视频采集参数对于确保监控系统的有效性和图像质量至关重要。这些参数不仅影响视频的清晰度和流畅度,还直接影响存储和网络传输的需求。 安防摄像机图像效果的好坏,由DSP处理器和图像传感器sensor决定,如何利用好已有的硬件资源&…...
在CentOS7上更换为阿里云源
在CentOS 7上更换为阿里云YUM源可以通过以下步骤进行: 备份当前的YUM源配置文件 sudo mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 下载阿里云的YUM源配置文件 sudo curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirr…...
小程序跳转到本页面并传参
const pages getCurrentPages(); const currentPage pages[pages.length - 1]; // 当前页面路由 const route currentPage.route; // 当前页面参数 const options currentPage.options;// 构建新的 URL 参数 const newOptions {...options,// newParam: newValue }; // 你…...
Vim操作
1. Vim的模式 2.正常模式->编辑模式 在上⽅插⼊⼀⾏: O在下⽅插⼊⼀⾏: o (open)在当前光标前插⼊: i在⾏⾸插⼊: I在当前光标后插⼊: a在⾏尾插⼊: A 3.常见命令行 1、拷贝当前行 yy ,拷贝当前行向下…...
金碟云星空-企微通知
需求背景: 通过企业微信,及时发送金碟云星空消息,比如流程异常、审批节点、等需要关注数据和信息点 需求目的: 及时告警、高响应、自动化 技能要求: 前后端开发工具的运用与开发,本实例使用IDEA 企业…...
Java中的运算符“instanceof“详解
在Java中,instanceof运算符用于检查一个对象是否是某个特定类的实例,或者是否实现了某个特定接口。它返回一个布尔值(true或false),用于在运行时进行类型检查。这在处理多态性时尤其有用,可以帮助我们确定对…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
