当前位置: 首页 > news >正文

【Linux】TCP网络编程

目录

V1_Echo_Server

V2_Echo_Server多进程版本

V3_Echo_Server多线程版本

V3-1_多线程远程命令执行

V4_Echo_Server线程池版本


V1_Echo_Server

 TcpServer的上层调用如下,和UdpServer几乎一样:

而在InitServer中,大部分也和UDP那里一样,不同的是使用socket时第二个参数是SOCK_STREAM。

除了创建socket和bind外,还有第三步,因为tcp是面向连接的,tcp需要未来不断地能够做到获取连接,需要将server套接字设为listen状态,以便随时等待被获取连接,

其中backlog一般设为较小的数字,比如4、8等。

此时,server处于listen状态,等待别人随时来连接自己,listen就比如饭馆老板一天随时等待客人来吃饭。然后,我们可以添加一个_isrunning的成员变量,以表明服务器的运行状态,初始化为false。

在server处于listen状态后,因为tcp是需要连接的,需要使用accept函数来获取连接:

其中,第一个参数是server的套接字,后两个参数是用来得到是谁来连接server。关键在于accept的返回值:

我们看到accept的返回值竟然是一个文件描述符,这就让我们有点蒙圈了。因为在之前写udp代码时,只有一个文件描述符,那么此时我们难免有这样两个疑问:

  • return fd是什么?
  • return fd 和 _sockfd的关系

我们来将一个小故事,比如你和你的朋友去杭州西湖玩,在那里附近有很多饭馆,有一家叫西湖鱼庄,这家店雇了张三在店外面拉客,正好你在饭点碰到这家饭馆,就被拉了进去吃饭,张三带着你们进了饭店门口,然后张三喊来客人了,出来个人招呼客人,然后李四就出来招呼你们了。然后,张三又去店外面继续拉客,过了不久,张三又拉来了几个客人,到了店里喊又来客人了,出来个人招呼,此时王五出来招呼这几个客人,张三又跑出去继续拉客。在这个过程中,张三不给客人提供服务,只负责拉客。这个西湖鱼庄就是服务器,一个个客户就是一个个连接,而张三就是类成员_sockfd,李四、王五就相当于accept的返回值return fd,这个返回值来给连接提供服务,_sockfd就是用来协助accept获取新连接。把这个只负责获取连接的_sockfd叫做listensockfd(监听套接字)。

把成员变量改为_listensockfd。

如果张三拉客失败,也就是accept的返回值为0,那会怎么样呢?张三当然会继续拉客。

在提供服务时,由于udp是面向数据报,udp只能用recvfrom和sendto这样和网络强相关的接口,而tcp是面向字节流。之前我们学过C/C++的文件流以及管道的字节流,这些都是“流”,实际上它们都是一个东西,Linux下一切皆文件,所以网络、管道等都是文件,所以只要符合相同的流的特性,tcp这里的字节流的读取就相当于文件读取,也就是可以使用read/write进行读取。当使用read进行读取时,表明读取客户端结束(文件中表示读到文件结尾,这点有区别)。

在客户端这里,也是首先创建套接字,然后不需要显式bind,但是一定要有自己的IP和port,所以需要隐式bind,OS会用自己的IP和随机端口号去bind sockfd。客户端也不需要监听,没人回来连接客户端。server在等连接,所以客户端需要发起连接,使用connect调用,

那什么时候进行自动bind呢?在创建连接成功时就会bind!client的代码如下:

int main(int argc, char* argv[])
{if(argc != 3){std::cerr << "Usage: " << argv[0] << "server_ip server_port" << std::endl;exit(0);}std::string server_ip = argv[1];uint16_t server_port = std::stoi(argv[2]);//1.创建socketint sockfd = ::socket(AF_INET, SOCK_STREAM, 0);if(sockfd < 0){std::cerr << "create socket error" << std::endl;exit(1);}//2.connectstruct sockaddr_in server;memset(&server, 0 , sizeof(server));server.sin_family = AF_INET;server.sin_port = htons(server_port);::inet_pton(AF_INET, server_ip.c_str(), &server.sin_addr.s_addr);int n = ::connect(sockfd, (struct sockaddr*)&server, sizeof(server));if(n < 0){std::cerr << "connect socket error\n" << std::endl;exit(2);}while(true){std::string message;std::cout << "Enter# ";std::getline(std::cin, message);write(sockfd, message.c_str(), message.size());char echo_buffer[1024];int n = ::read(sockfd, echo_buffer, sizeof(echo_buffer)-1);if(n > 0){echo_buffer[n] = 0;std::cout << echo_buffer << std::endl;}else{break;}}::close(sockfd);return 0;
}

我们编译运行这份代码,当启动第一个客户端时,发现可以正常echo:

然后我们再启动第二个客户端,发现服务器没有和第二个客户端建立连接,也没有echo,

只有把第一个客户端退出后,服务器才能和第二个客户端建立连接,服务器才能echo第二个客户端,

因此,我们发现这版客户端代码没有并发处理能力,一次只能处理一个客户端,这时因为主线程一直在Service内部在运行:

所以,为了解决以上服务器端不能并发处理的问题,

V2_Echo_Server多进程版本

因此,我们在处理Service时,通过创建子进程来处理:

父子进程都要有独立的文件描述符表,而子进程的文件描述符表是从父进程那里拷贝来的,注定了父子进程指向了同样的文件,所以子进程肯定能看见创建的创建的sockfd(代码是共享的,数据以写时拷贝的方式各自私有一份),也就是说,父进程打开了多少个文件,子进程可以看到并且能访问。父进程创建的listensockfd是3文件描述符,子进程创建的sockfd是4号文件描述符,子进程从父进程拷贝了文件描述符表,所以和父进程指向同一个文件。因为子进程不关心3,只关心4,这里的建议是让子进程关闭listensockfd,只保留sockfd。同时要求父进程关闭sockfd,只保留listensockfd,这里是要求,如果父进程不关sockfd,相当于4号文件描述符一直被占用,如果再有客户端来连接服务器,只能使用5号文件描述符来处理,导致父进程的文件描述符一直在被打开而从来没有被关闭,文件描述符的本质就是数组的下标,数组下标肯定是有限个,这就导致了文件描述符泄漏的问题。

所以,我们期望的是父进程把自己该做的做完,然后去回到accept,继续等待被连接。而子进程去执行if(id ==0)内部的代码,这样就能做到服务器采用多进程的方式并发处理连接,

可是,父进程在waitpid时采用的是0(阻塞式等待),所以我们刚才想的理想过程不会发生,子进程在处理任务期间,父进程会阻塞等待,这不是还是一次只能处理一个连接吗?!那怎么解决呢?我们在学习信号的时候,子进程在退出时,会向父进程发送SIGCHID信号,如果对SIGCHID进程ingore,那父进程就不需要等子进程退出了,只负责连接就行了,这种方式是可行的也是最推荐的。

此外,我们还可以这样做:

在子进程中再创建子进程,也就是孙子进程。if(fork() > 0)exit(0)让子进程直接退了,直接留下孙子进程。子进程返回了,父进程就能等待成功然后返回了。当孙子进程处理完后,就会变成孤儿进程,被系统领养,就不用再关心这个孙子进程了。但是这不是最好方案,最好方案就是上面那种。

V3_Echo_Server多线程版本

创建新线程,主线程会等待新线程,这还是串行运行,不能实现并发访问。为此,我们想到之前学过线程分离,不再让主线程等待新线程,而是让新线程分离,

那用于执行任务的文件描述符sockfd怎么交给新线程呢?我们知道,新线程和主线程是共享同一张文件描述符表的,这里绝对不能让主线程和新线程关闭自己不用的套接字fd,也不需要了。我们把Execute函数设置为了static属性,不能访问类内方法,不能访问类内的Service方法,为此,我们创建一个内部类ThreadData:

V3-1_多线程远程命令执行

由远程发过来命令行字符串,server对命令行字符串进行执行,把执行结果返回给远程。建立Command.hpp头文件,

 

我们进行网络的读取,不仅仅可以使用read/write接口,还可以使用recv/send这一对接口,这两个接口不能用来读取udp,只能读取tcp,是面向字节流的读取。

recv/send的flags默认设为0。Command类的设计如下,HandlerCommand函数用于处理客户端传来的字符串,通过Excute函数来把传入的字符串做解释,

那在Excute拿到待解释的命令行字符串后,怎么解释这个字符串呢?我们可以使用popen函数调用:

popen内部会建立一个管道文件,然后创建子进程,执行对应的command命令,内部来帮我们做命令行解析,解析后的内容放到管道文件中,返回FILE*,让我们以文件的方式读取管道。换句话说,未来只需要命令字符串传给popen就可以了,像读文件一样把结果读出来。第二个参数type是"r"/"w"/"a"。通过pclose把对应的管道文件关闭。

class Command
{
public:Command(){_safe_command.insert("ls");_safe_command.insert("touch");_safe_command.insert("pwd");_safe_command.insert("whoami");_safe_command.insert("which");   }~Command(){}bool CheckSafe(const std::string& cmdstr){for(auto e : _safe_command){if(strncmp(e.c_str(), cmdstr.c_str(), e.size()) == 0){return true;}}return false;}std::string Excute(const std::string& cmdstr){if(!CheckSafe(cmdstr)) return "unsafe";FILE* fp = popen(cmdstr.c_str(), "r");std::string result;if(fp){char line[1024];while(fgets(line, sizeof(line), fp)){result += line;}return result;}return "excute error";}void HandlerCommand(int sockfd, InetAddr addr){while (true){char commandbuff[1024];ssize_t n = ::recv(sockfd, commandbuff, sizeof(commandbuff) - 1, 0); // TODOif (n > 0){commandbuff[n] = 0;LOG(INFO, "get command from client %s, command : %s\n", addr.AddrStr(), commandbuff); std::string result = Excute(commandbuff);::send(sockfd, result.c_str(), result.size(),0);}else if (n == 0){LOG(INFO, "client %s quit\n", addr.AddrStr().c_str());break;}else{LOG(ERROR, "read error: %s quit\n", addr.AddrStr().c_str());}}}
private:std::set<std::string> _safe_command;
};

运行结果如下:

实际上,我们打开Xshell,实际上是打开了一个客户端,在Xshell上输入命令,其实是将命令发送到远端,去请求服务器上的一个长启动的服务,把命令行字符串交给它,由它执行并推送给客户端执行结果。所以,我们所谓的命令执行就是推送到远端。

V4_Echo_Server线程池版本

实际上,这种Service长服务不太适合用线程池,因为线程池中的线程是有上限的,每个线程一直被占用。这次的线程池版本只是一个示例,未来还是要使用V2版本的多线程。创建任务类型task_t,这是线程池中任务的类型,

using func_t = std::function<void()>; 

然后构建任务,放到线程池中去处理:

总结一下tcp,就是通过listensocket套接字去获取连接,把新连接和客户端地址交给别人去处理,可以多并发地去处理。

相关文章:

【Linux】TCP网络编程

目录 V1_Echo_Server V2_Echo_Server多进程版本 V3_Echo_Server多线程版本 V3-1_多线程远程命令执行 V4_Echo_Server线程池版本 V1_Echo_Server TcpServer的上层调用如下&#xff0c;和UdpServer几乎一样&#xff1a; 而在InitServer中&#xff0c;大部分也和UDP那里一样&…...

排序学习整理(2)

上集回顾 排序学习整理&#xff08;1&#xff09;-CSDN博客 2.3 交换排序 交换排序的基本思想是&#xff1a;根据序列中两个记录键值的比较结果&#xff0c;交换这两个记录在序列中的位置。 特点&#xff1a; 通过比较和交换操作&#xff0c;将键值较大的记录逐步移动到序列…...

AI蛋白质设计与人工智能药物设计

AI蛋白质设计与人工智能药物设计 AI蛋白质设计 一、蛋白质相关的深度学习简介 1.基础概念 1.1.机器学习简介&#xff1a;从手写数字识别到大语言模型 1.2.蛋白质结构预测与设计回顾 1.3.Linux简介 1.4.代码环境&#xff1a;VS code和Jupyter notebook* 1.5.Python关键概…...

IOS ARKit进行图像识别

先讲一下基础控涧&#xff0c;资源的话可以留言&#xff0c;抽空我把它传到GitHub上&#xff0c;这里没写收积分&#xff0c;竟然充值才能下载&#xff0c;我下载也要充值&#xff0c;牛&#xff01; ARSCNView 可以理解画布或者场景 1 配置 ARWorldTrackingConfiguration AR追…...

初级数据结构——二叉搜索树

目录 前言一、定义二、基本操作三、时间复杂度分析四、变体五、动态图解六、代码模版七、经典例题[1.——700. 二叉搜索树中的搜索](https://leetcode.cn/problems/search-in-a-binary-search-tree/)代码题解 [2.——938. 二叉搜索树的范围和](https://leetcode.cn/problems/ra…...

C++设计模式之组合模式中如何实现同一层部件的有序性

在组合模式中&#xff0c;为了实现同一层上部件的有序性&#xff0c;可以采取以下几种设计方法&#xff1a; 1. 使用有序集合 使用有序集合&#xff08;如 std::list、std::vector 或其他有序容器&#xff09;来存储和管理子部件。这种方法可以确保子部件按照特定顺序排列&am…...

duxapp RN 端使用AppUpgrade 进行版本更新

版本更新包含了组件和工具的组合 注册 下面这是 duxcms 入口文件检查更新的注册方法&#xff0c;注册的同时会检查更新 import {request,updateApp,userConfig } from ./utils// 检查app更新 setTimeout(async () > {if (process.env.TARO_ENV rn) {// eslint-disable-n…...

【计网】自定义序列化反序列化(三) —— 实现网络版计算器【下】

&#x1f30e;实现网络版计算器【下】 本次序列化与反序列化所用到的代码&#xff0c;Tcp服务自定义序列化反序列化实现网络版计算器。 文章目录&#xff1a; 实实现网络版计算器【下】 客户端实现     基于守护进程的改写 &#x1f680;客户端实现 在这之前&#xff0c…...

神经网络中的优化方法(一)

目录 摘要Abstract1. 与纯优化的区别1.1 经验风险最小化1.2 代理损失函数1.3 批量算法和小批量算法 2. 神经网络中优化的挑战2.1 病态2.2 局部极小值2.3 高原、鞍点和其他平坦区域2.4 悬崖和梯度爆炸2.5 长期依赖2.6 非精确梯度2.7 局部和全局结构间的弱对应 3. 基本算法3.1 随…...

Linux 计算机网络基础概念

目录 0.前言 1.计算机网络背景 1.1 独立模式 1.2 网络互联 1.3 局域网&#xff08;Local Area Network&#xff0c;LAN&#xff09; 1.4 广域网&#xff08;Wide Area Network&#xff0c;WAN&#xff09; 2.协议 2.1什么是协议 2.2协议分层和软件分层 2.3 OSI七层网络模型 2.3…...

qt QGraphicsEllipseItem详解

1、概述 QGraphicsEllipseItem是Qt框架中QGraphicsItem的一个子类&#xff0c;它提供了一个可以添加到QGraphicsScene中的椭圆项。QGraphicsEllipseItem表示一个带有填充和轮廓的椭圆&#xff0c;也可以用于表示椭圆段&#xff08;通过startAngle()和spanAngle()方法&#xff…...

Python websocket

router.websocket(/chat/{flow_id}) 接口代码&#xff0c;并了解其工作流程、涉及的组件以及如何基于此实现你的新 WebSocket 接口。以下内容将分为几个部分进行讲解&#xff1a; 接口整体概述代码逐行解析关键组件和依赖关系如何基于此实现新功能示例&#xff1a;创建一个新的…...

【MySQL-5】MySQL的内置函数

目录 1. 整体学习的思维导图 2. 日期函数 ​编辑 2.1 current_date() 2.2 current_time() 2.3 current_timestamp() 2.4 date(datetime) 2.5 now() 2.6 date_add() 2.7 date_sub() 2.8 datediff() 2.9 案例 2.9.1 创建一个出生日期登记簿 2.9.2 创建一个留言版 3…...

深度学习笔记之BERT(三)RoBERTa

深度学习笔记之RoBERTa 引言回顾&#xff1a;BERT的预训练策略RoBERTa训练过程分析静态掩码与动态掩码的比较模型输入模式与下一句预测使用大批量进行训练使用Byte-pair Encoding作为子词词元化算法更大的数据集和更多的训练步骤 RoBERTa配置 引言 本节将介绍一种基于 BERT \t…...

C++知识点总结(59):背包型动态规划

背包型动态规划 一、背包 dp1. 01 背包&#xff08;限量&#xff09;2. 完全背包&#xff08;不限量&#xff09;3. 口诀 二、例题1. 和是质数的子集数2. 黄金的太阳3. 负数子集和4. NASA的⻝物计划 一、背包 dp 1. 01 背包&#xff08;限量&#xff09; 假如有这几个物品&am…...

C++:反向迭代器的实现

反向迭代器的实现与 stack 、queue 相似&#xff0c;是通过适配器模式实现的。通过传入不同类型的迭代器来实现其反向迭代器。 正向迭代器中&#xff0c;begin() 指向第一个位置&#xff0c;end() 指向最后一个位置的下一个位置。 代码实现&#xff1a; template<class I…...

webGL入门教程_04vec3、vec4 和齐次坐标总结

vec3、vec4 和齐次坐标总结 1. vec3 和 vec4 1.1 什么是 vec3 和 vec4&#xff1f; vec3&#xff1a; GLSL 中的三维向量类型&#xff0c;包含 3 个浮点数&#xff1a;(x, y, z)。常用于表示三维坐标、RGB 颜色、法线、方向等。 vec4&#xff1a; GLSL 中的四维向量类型&…...

uniapp中父组件数组更新后与页面渲染数组不一致实战记录

简单描述一下业务场景方便理解: 商品设置功能,支持添加多组商品(点击添加按钮进行增加).可以对任意商品进行删除(点击减少按钮对选中的商品设置进行删除). 问题: 正常添加操作后,对已添加的任意商品删除后,控制台打印数组正常.但是与页面显示不一致.已上图为例,选中尾…...

优化 Conda 下载速度:详细的代理配置和网络管理策略

优化 Conda 下载速度&#xff1a;详细的代理配置和网络管理策略 为了彻底解决使用 Conda 下载 PyTorch 时遇到的速度问题&#xff0c;并确保下载过程稳定可靠&#xff0c;这需要一个详细、综合的技术方案。让我们更深入地分析问题原因&#xff0c;然后详尽地解释采取的解决策略…...

服务器遭受DDoS攻击后如何恢复运行?

当服务器遭受 DDoS&#xff08;分布式拒绝服务&#xff09;攻击 后&#xff0c;恢复运行需要快速采取应急措施来缓解攻击影响&#xff0c;并在恢复后加强防护以减少未来攻击的风险。以下是详细的分步指南&#xff1a; 一、应急处理步骤 1. 确认服务器是否正在遭受 DDoS 攻击 …...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...