动态系统特征分析:特征向量、特征值、频率与阻尼比、参与因子计算方法
特征值和特征向量在动态系统分析中是核心工具,广泛用于电力系统小信号稳定性、机械系统模态分析等领域。以下详细介绍计算方法及应用。
1. 求解特征值与特征向量
对于一个 n × n n\times n n×n的系统矩阵 A A A:
右特征向量与特征值
特征值( λ \lambda λ)及对应右特征向量( v \mathbf{v} v)满足以下特征方程:
A v = λ v A\mathbf{v}=\lambda\mathbf{v} Av=λv
常用数值计算工具:
- Python:
numpy.linalg.eig(A)
得到特征值和右特征向量。 - MATLAB:
[V,D]=eig(A)
,其中 D D D为特征值对角矩阵, V V V为右特征向量矩阵。
左特征向量
左特征向量( u \mathbf{u} u)满足:
u T A = λ u T \mathbf{u}^T A=\lambda\mathbf{u}^T uTA=λuT
或等价于:
A T u = λ u A^T\mathbf{u}=\lambda\mathbf{u} ATu=λu
计算左特征向量可通过对 A T A^T AT求右特征向量实现。
左右特征向量的正交性
左特征向量 u i \mathbf{u}_i ui与右特征向量 v j \mathbf{v}_j vj之间满足正交性:
u i T v j = δ i j \mathbf{u}_i^T\mathbf{v}_j=\delta_{ij} uiTvj=δij
其中 δ i j \delta_{ij} δij为Kronecker delta。
2. 频率与阻尼比计算
假设特征值 λ \lambda λ为复数,表示为:
λ = σ + j ω \lambda=\sigma+j\omega λ=σ+jω
- 实部 σ \sigma σ为系统的衰减率;
- 虚部 ω \omega ω为振荡角频率。
频率计算
振荡频率 f f f:
f = ω 2 π f=\frac{\omega}{2\pi} f=2πω
阻尼比计算
阻尼比 ζ \zeta ζ定义为:
ζ = − σ σ 2 + ω 2 \zeta=-\frac{\sigma}{\sqrt{\sigma^2+\omega^2}} ζ=−σ2+ω2σ
- ζ > 1 \zeta>1 ζ>1:过阻尼系统(无振荡);
- ζ = 1 \zeta=1 ζ=1:临界阻尼系统;
- 0 < ζ < 1 0<\zeta<1 0<ζ<1:欠阻尼系统(伴随振荡);
- ζ = 0 \zeta=0 ζ=0:无阻尼(纯振荡);
- ζ < 0 \zeta<0 ζ<0:不稳定系统。
3. 示例代码
特征矩阵分析
对于一个复杂的矩阵 A A A:
A = [ 2 1 0 0 − 1 3 1 0 0 − 2 4 1 0 0 − 1 5 ] A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ -1 & 3 & 1 & 0 \\ 0 & -2 & 4 & 1 \\ 0 & 0 & -1 & 5 \end{bmatrix} A= 2−10013−20014−10015
MATLAB代码
以下代码计算矩阵 A A A的特征值、左右特征向量、频率及阻尼比:
% 定义复杂的特征矩阵 A
A = [2, 1, 0, 0; -1, 3, 1, 0; 0, -2, 4, 1; 0, 0, -1, 5];% 求解特征值和右特征向量
[V, D] = eig(A); % V 为右特征向量,D 为特征值对角矩阵% 提取特征值
eigenvalues = diag(D);% 左特征向量(通过 A' 求解特征值和特征向量)
[U, ~] = eig(A'); % U 的列为左特征向量% 计算参与因子矩阵
Participation_Factors = abs(U' * V);% 计算频率和阻尼比
omega = imag(eigenvalues); % 振荡角频率
sigma = real(eigenvalues); % 衰减率
frequencies = omega / (2 * pi); % 振荡频率 (Hz)
damping_ratios = -sigma ./ abs(eigenvalues); % 阻尼比% 打印结果
disp('特征值:');
disp(eigenvalues);disp('右特征向量:');
disp(V);disp('左特征向量:');
disp(U);disp('频率 (Hz):');
disp(frequencies);disp('阻尼比:');
disp(damping_ratios);% 打印结果
disp('参与因子矩阵:');
disp(Participation_Factors);
特征值的预期结果
运行代码后,特征值可能为:
λ 1 = 5 , λ 2 = 4 + j , λ 3 = 4 − j , λ 4 = 2 \lambda_1 = 5, \quad \lambda_2 = 4 + j, \quad \lambda_3 = 4 - j, \quad \lambda_4 = 2 λ1=5,λ2=4+j,λ3=4−j,λ4=2
频率与阻尼比计算
- 对于复数特征值 λ = 4 ± j \lambda = 4 \pm j λ=4±j,频率:
f = ω 2 π = 1 2 π ≈ 0.159 Hz f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \approx 0.159 \,\text{Hz} f=2πω=2π1≈0.159Hz
- 对应的阻尼比:
ζ = − σ σ 2 + ω 2 = − 4 4 2 + 1 2 = − 0.970 \zeta = -\frac{\sigma}{\sqrt{\sigma^2 + \omega^2}} = -\frac{4}{\sqrt{4^2 + 1^2}} = -0.970 ζ=−σ2+ω2σ=−42+124=−0.970
4. 应用场景
电力系统
在小信号稳定性分析中,通过特征值判断系统是否稳定。
机械系统
进行模态分析,利用频率和阻尼比评估振动特性。
控制系统
分析闭环系统的稳定性、响应速度及振荡行为。
相关文章:
动态系统特征分析:特征向量、特征值、频率与阻尼比、参与因子计算方法
特征值和特征向量在动态系统分析中是核心工具,广泛用于电力系统小信号稳定性、机械系统模态分析等领域。以下详细介绍计算方法及应用。 1. 求解特征值与特征向量 对于一个 n n n\times n nn的系统矩阵 A A A: 右特征向量与特征值 特征值( λ \lambd…...

乐鑫发布 esp-iot-solution v2.0 版本
今天,乐鑫很高兴地宣布,esp-iot-solution v2.0 版本已经发布,release/v2.0 分支下的正式版本组件将为用户提供为期两年的 Bugfix 维护(直到 2027.01.25 ESP-IDF v5.3 EOL)。该版本将物联网开发中常用的功能进行了分类整…...

动态代理如何加强安全性
在当今这个信息爆炸、网络无孔不入的时代,我们的每一次点击、每一次浏览都可能留下痕迹,成为潜在的安全隐患。如何在享受网络便利的同时,有效保护自己的隐私和信息安全,成为了每位网络使用者必须面对的重要课题。动态代理服务器&a…...
Flutter 之 InheritedWidget
InheritedWidget 是 Flutter 框架中的一个重要类,用于在 Widget 树中共享数据。它是 Flutter 中数据传递和状态管理的基础之一。通过 InheritedWidget,你可以让子 Widget 在不需要显式传递数据的情况下,访问祖先 Widget 中的数据。这种机制对…...

AI 助力开发新篇章:云开发 Copilot 深度体验与技术解析
本文 一、引言:技术浪潮中的个人视角1.1 AI 和低代码的崛起1.2 为什么选择云开发 Copilot? 二、云开发 Copilot 的核心功能解析2.1 自然语言驱动的低代码开发2.1.1 自然语言输入示例2.1.2 代码生成的模块化支持 2.2 实时预览与调整2.2.1 实时预览窗口功能…...
MyBatis-Plus介绍及基本使用
文章目录 概述介绍MyBatis-Plus 常用配置分页插件配置类注解配置 快速入门maven 依赖编写配置文件编写启动类编写 MybatisPlus 配置类 代码生成器:MybatisPlusGeneratormaven依赖代码生成器核心类 概述 介绍 MyBatis-Plus(简称 MP)是一个 M…...

SpringBoot 整合 Avro 与 Kafka
优质博文:IT-BLOG-CN 【需求】:生产者发送数据至 kafka 序列化使用 Avro,消费者通过 Avro 进行反序列化,并将数据通过 MyBatisPlus 存入数据库。 一、环境介绍 【1】Apache Avro 1.8;【2】Spring Kafka 1.2…...
支持JT1078和GB28181的流媒体服务器-LKM启动配置文件参数说明
流媒体服务器地址:https://github.com/lkmio/lkm GB28181信令,模拟多个国标设备工具:https://github.com/lkmio/gb-cms 文章目录 gop_cachegop_buffer_sizeprobe_timeoutwrite_timeoutmw_latencylisten_ippublic_ipidle_timeoutreceive_timeo…...
什么是隐式类型转换?隐式类型转换可能带来哪些问题? 显式类型转换(如强制类型转换)有哪些风险?
C 中的隐式类型转换 定义:在 C 中,隐式类型转换是指由编译器自动执行的类型转换,不需要程序员显式地进行操作。这种转换在很多情况下会自动发生,比如在表达式求值、函数调用传参等过程中。常见场景 算术运算中的转换:…...
量化交易新利器:阿布量化(AbuQuant)——金融研究者的得力助手
🚀 量化交易新利器:阿布量化(AbuQuant)——金融研究者的得力助手 🚀 文章目录 🚀 量化交易新利器:阿布量化(AbuQuant)——金融研究者的得力助手 🚀dz…...
UI设计从入门到进阶,全能实战课
课程内容: ├── 【宣导片】从入门到进阶!你的第一门UI必修课!.mp4 ├── 第0课:UI知识体系梳理 学习路径.mp4 ├── 第1课:IOS设计规范——基础规范与切图.mp4 ├── 第2课:IOS新趋势解析——模块规范与设计原则(上).mp4…...
Uniapp自动调整元素高度
获取设备的像素 如果你想让元素的高度相对于整个屏幕的高度占用一定的比例,可以通过获取屏幕的高度,然后计算出你想要的比例来设置元素的高度。以下是如何实现的示例: <script setup> import { ref, onMounted } from vue;// 定义一个…...

软考高项经验分享:我的备考之路与实战心得
软考,尤其是信息系统项目管理师(高项)考试,对于众多追求职业提升与专业认可的人士来说,是一场充满挑战与机遇的征程。我在当年参加软考高项的经历,可谓是一波三折,其中既有成功的喜悦࿰…...

安全关系型数据库查询新选择:Rust 语言的 rust-query 库深度解析
在当今这个数据驱动的时代,数据库作为信息存储和检索的核心组件,其重要性不言而喻。然而,对于开发者而言,如何在保证数据安全的前提下,高效地进行数据库操作却是一项挑战。传统的 SQL 查询虽然强大,但存在诸…...
《C++ 模型训练之早停法:有效预防过拟合的关键策略》
在 C 模型开发的复杂世界里,过拟合犹如一个潜藏的陷阱,常常使我们精心构建的模型在实际应用中表现大打折扣。而早停法(Early Stopping)作为一种行之有效的策略,能够帮助我们及时察觉模型训练过程中的异常,避…...

5.11【数据库】第一次实验
民宿预定,至少有不同的民宿,民宿下面有不同的房间(面积,房间编号) 房间类型,单价, 可预订以及不可预订 游客信息 订单信息 公司有很多课程, 学生,课程 每位学生每期…...

【CSS in Depth 2 精译_062】第 10 章 CSS 中的容器查询(@container)概述 + 10.1 容器查询的一个简单示例
当前内容所在位置(可进入专栏查看其他译好的章节内容) 【第十章 CSS 容器查询】 ✔️ 10.1 容器查询的一个简单示例 ✔️ 10.1.1 容器尺寸查询的用法 ✔️ 10.2 深入理解容器10.3 与容器相关的单位10.4 容器样式查询的用法10.5 本章小结 文章目录 第 10…...

蓝桥杯每日真题 - 第23天
题目:(直线) 题目描述(12届 C&C B组C题) 解题思路: 题目理解: 在平面直角坐标系中,从给定的点集中确定唯一的直线。 两点确定一条直线,判断两条直线是否相同,可通过…...
# Vue 入门级教程三
在前两篇 Vue 入门教程中,我们已经熟悉了 Vue 的基础语法、数据绑定、指令以及组件化开发等核心概念。在本教程中,我们将进一步探索 Vue 的高级特性,包括过滤器、自定义指令、过渡效果以及 Vue 与后端数据交互等内容,让你能够构建…...

hint: Updates were rejected because the tip of your current branch is behind!
问题 本地仓库往远段仓库推代码时候提示: error: failed to push some refs to 192.168.2.1:java-base/java-cloud.git hint: Updates were rejected because the tip of your current branch is behind! refs/heads/master:refs/heads/master [rejected] (…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...

GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

恶补电源:1.电桥
一、元器件的选择 搜索并选择电桥,再multisim中选择FWB,就有各种型号的电桥: 电桥是用来干嘛的呢? 它是一个由四个二极管搭成的“桥梁”形状的电路,用来把交流电(AC)变成直流电(DC)。…...

【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...

JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...