12.02 深度学习-卷积
# 卷积 是用于图像处理 能够保存图像的一些特征 卷积层 如果用全连接神经网络处理图像 计算价格太大了 图像也被转为线性的对象导致失去了图像的空间特征 只有在卷积神经网络cnn的最后一层使用全连接神经网络
# 图像处理的三大任务
# 目标检测 对图像中的目标进行框出来
# 图像分割
# 图像分类
# 卷积核的参数是要变的 这个值有个最优解 线性回归求这个最优解
# 卷积的计算 先卷再积 卷 左右上下移动 积 对应位置矩阵 对应位置相乘再相加 最后得到一个特征矩阵跟卷积结果一样的size
# import os
# current_path=os.path.dirname(__file__) # 将脚本文件所在的目录路径赋值给变量 current_path, 所在文件夹路径
# path2=os.path.relpath(路径1) # 获取路径1 文件到当前文件的相对路径
# 在神经网络中加入卷积层 为卷积神经网络 cnn
# cv2读 图像 然后 torch创建卷积核
import os
import cv2
from torch import nn
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
def demo1():
path="assets/1.png"
# print(path)
# 读取图像
img=cv2.imread(path)
# 创建卷积核 一个卷积核就是卷积层
conv=nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,stride=1,padding=0) # 传入输入图像的通道数 和输出的特征图数量 卷积核大小 步长(卷积核移动的规格) 填充
# 这个会自动初始化一个卷积和的参数
# conv(图像tensor数组) 传入图像进行卷积 得到特征图 tensor 的应该为 n,c,h,w 或者c,h,w
# 传入图像的通道数应该跟in_channels一致 且数据类型为tensor.float
# 转为tensor,并归一化到[0, 1]
img = torch.tensor(img, dtype=torch.float32) / 255.0
# 转换维度
img=img.permute(2,0,1).unsqueeze(0)
# print(img.shape)
# 卷积
img=conv(img) # 卷积操作的tensor 必须为float
# print(img.shape)
# 用 plt 显示出来
plt.imshow(img[0][0].detach().numpy(),cmap="gray")
plt.show()
pass
def demo2():
# 一个四通道的图像 通过卷积核处理 这个卷积核应该也有四个通道 对应处理rgba 也可以说是4个卷积核吧 然后 每个通道进行卷积 然后加起来 为一个特征图 输出多个特征图 就要有多个卷积核每个卷积核参数不一样
# 然后再卷积的话 上面输出的特征图数量就会被下一个卷积和当做通道
# 如果 一个四通道的卷积核 核大小为3 且有偏置 如果输出32和特征图 那么有 32*4*3*3+32 个参数 特征图数量*每个卷积核的通道数 *卷积核的规格 +偏置数 每一个卷积核对应1个偏置
# 输出多个特征图 后面每一个特征图 对图像注意的地方不同
# 边缘填充: 通过上面的卷积计算,我们发现最终的特征图比原始图像要小,如果想要保持图像大小不变, 可在原图周围添加padding来实现。更重要的,边缘填充还更好的保护了图像边缘数据的特征。
# 让边缘的数据利用更充分 在原图上进行边缘填充
# 卷积结果 特征图的大小的计算 (W-F+2P) / S +1 W:图像的大小 W*W 卷积核大小F*F 边缘填充 P 步长:S 宽高不一样就各自算各自的 宽高 都带一遍公式
pass
# 构建卷积神经网络
def demo3():
class MyNet(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# 卷积层
self.conv1=nn.Conv2d(in_channels=1,out_channels=32,kernel_size=3,stride=1,padding=0)
self.conv2=nn.Conv2d(in_channels=32,out_channels=128,kernel_size=3,stride=1,padding=0)
self.conv3=nn.Conv2d(in_channels=128,out_channels=512,kernel_size=3,stride=1,padding=0)
# 线性层 线性层的输入是 特征的数量 特征的总数量是不是 图片数乘图片规格 表示每一个特征图的每个点啊
self.fc=nn.Linear(512*26*26,10)
# 前向传播
def forward(self,x):
# 每一层用激活函数激活
x=F.relu(self.conv1(x))
x=F.relu(self.conv2(x))
x=F.relu(self.conv3(x))
# 线性层全连接输出 先展平为2维 因为线性层输入是一个二维的矩阵
x=x.view(x.shape[0],-1) # x.size(0):这部分获取x的第0维的大小。在PyTorch中,张量的维度通常按照以下顺序表示
# x.view(x.size(0),-1):这个操作将x重塑为一个新的形状,其中第0维(batch_size)保持不变,而其他维度被“展平”(flattened)为一个长向量。这是在很多神经网络架构中常见的操作,
# 特别是在将卷积层的输出传递给全连接层(fully connected layer)之前。因为全连接层期望的输入是一个二维张量,其中第一维是批次大小,第二维是每个样本的特征数量。
return F.softmax(self.fc(x))
net1=MyNet()
input=torch.randn(4,1,32,32,dtype=torch.float32)
output=net1.forward(input)
print(output)
# 卷积参数共享
# 卷积神经网络只考虑卷积核的参数 以卷积核为单位 全链接 以每一个节点为单位而且还要与上层全链接 参数个数直接爆炸
# 卷积就是把这些数据放到多个维度上单维度的数量就少了
if __name__=="__main__":
# demo1()
# demo2()
demo3()
pass
相关文章:
12.02 深度学习-卷积
# 卷积 是用于图像处理 能够保存图像的一些特征 卷积层 如果用全连接神经网络处理图像 计算价格太大了 图像也被转为线性的对象导致失去了图像的空间特征 只有在卷积神经网络cnn的最后一层使用全连接神经网络 # 图像处理的三大任务 # 目标检测 对图像中的目标进行框出来 # 图…...

MySQL 主从同步一致性详解
MySQL主从同步是一种数据复制技术,它允许数据从一个数据库服务器(主服务器)自动同步到一个或多个数据库服务器(从服务器)。这种技术主要用于实现读写分离、提升数据库性能、容灾恢复以及数据冗余备份等目的。下面将详细…...

Spring源码导入idea时gradle构建慢问题
当我们将spring源码导入到idea进行构建的时候,spring采用的是gradle进行构建,默认下注在依赖是从https://repo.maven.apache.org会特别慢,需要改为国内的镜像地址会加快速度。 将项目中build.gradle配置进行调整: repositories …...
Dockerfile 安装echarts插件给java提供服务
java调用echarts插件,生成图片保存到磁盘然后插入到pptx中报表。 Dockerfile文件内容: #基础镜像,如果本地仓库没有,会从远程仓库拉取 openjdk:8 FROM docker.io/centos:centos7 #暴露端口 EXPOSE 9311 # 避免centos 日志输出 …...

Springboot小知识(1):启动类与配置
一、启动类(引导类) 在通常情况下,你创建的Spring应用项目都会为你自动生成一个启动类,它是这个应用的起点。 在Spring Boot中,引导类(也称为启动类,通常是main方法所在的类)是整个…...

[CISCN 2019华东南]Web11
[CISCN 2019华东南]Web11 给了两个链接但是都无法访问 这里我们直接抓包试一下 我们插入X-Forwarded-For:127.0.0.1 发现可以修改了右上角的IP地址,从而可以进行注入 {$smarty.version} 查看版本号 if标签执行PHP命令 {if phpinfo()}{/if} 查看协议 {if system(…...
Cypress内存溢出奔溃问题汇总
内存溢出报错信息 <--- Last few GCs ---> [196:0xe58001bc000] 683925 ms: Scavenge 1870.7 (1969.9) -> 1865.6 (1969.9) MB, 6.07 / 0.00 ms (average mu 0.359, current mu 0.444) task; [196:0xe58001bc000] 683999 ms: Scavenge 1872.4 (1969.9) -> 1867.1…...
树莓派4B--OpenCV安装踩坑
报错: Source directory: /tmp/pip-install-pv7l9r25/opencv-python_08fdf5a130a5429f89b0e0eaab39a329 Working directory: /tmp/pip-install-pv7l9r25/opencv-python_08fdf5a130a5429f89b0e0eaab39a329/_skbuild/linux-armv7l-3.7/cmake-build Please check the i…...

电子电气架构 --- 面向服务的汽车诊断架构
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所有人的看法和评价都是暂时的,只有自己的经历是伴随一生的,几乎所有的担忧和畏惧,都是来源于自己的想象,只有你真的去做了,才会发现有多快乐。…...

Pytest --capture 参数详解:如何控制测试执行过程中的输出行为
--capture 选项用于控制测试用例执行过程中标准输出(stdout)和标准错误输出(stderr)的捕获行为。 --capture 的选项值: fd(默认) 捕获文件描述符级别的输出(stdout 和 stderr&#x…...

IS-IS的原理
IS-IS的基本概念: 概述: IS-IS,中间系统到中间系统,是ISO国际标准化组织为它的无连接网络协议设计的一种动态路由协议 IS-IS支持CLNP网络和IP网络,采用数据链路层封装,区别于ospf只支持IP网络࿰…...

C++(4个类型转换)
1. C语言中的类型转换 1. 隐式 类型转换: 具有相近的类型才能进行互相转换,如:int,char,double都表示数值。 2. 强制类型转换:能隐式类型转换就能强制类型转换,隐式类型之间的转换类型强相关,强制类型转换…...
Ubuntu20.04安装NVIDIA显卡驱动
Ubuntu20.04安装NVIDIA显卡驱动 参考资料:https://blog.csdn.net/weixin_39244242/article/details/136282614?fromshareblogdetail&sharetypeblogdetail&sharerId136282614&sharereferPC&sharesourceqq_37397652&sharefromfrom_link 成功配置…...
速盾:介绍一下高防cdn的缓存响应事什么功能?
高防CDN(Content Delivery Network)是一种基于分布式缓存技术的网络加速服务,能够提供强大的缓存响应功能。它的缓存响应功能主要包括缓存加速和智能缓存两个方面。 首先,高防CDN的缓存加速功能是指通过在全球范围内部署大量的缓…...

Nuclei-快速漏洞扫描器
Nuclei-快速漏洞扫描器 声明 学习内容来自 B 站UP主泷羽sec,如涉及侵权马上删除文章。 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负。 ✍Ἷ…...

linux网络抓包工具
linux网络抓包工具 一、tcpdump1.1 基本用法1.2 龙芯平台实例操作 二、wireshark2.1 主要功能2.2 龙芯平台实例操作 一、tcpdump tcpdump 指令可列出经过指定网络界面的数据包文件头,可以将网络中传送的数据包的 “头” 完全截获下来提供分析。它支持针对网络层、协…...

详解桥接模式
引言 在开发过程中,可能会遇到系统设计有多种维度变化的情况,比如我们想画一幅五彩斑斓的画,需要用到12个颜色,但是需要粗细不同的线条(粗、中、细),如果用蜡笔,就需要粗中细三种蜡笔…...

探索AI新世界!热门工具与学习资源免费获取
抖知书老师推荐: 人工智能技术的迅速发展让人们既充满期待又有些迷茫。有人担忧被AI技术取代,有人却积极拥抱这场科技浪潮。无论你处于哪种心态,人工智能已经深入到我们生活的方方面面。如果你希望轻松掌握最新的AI工具与动态,…...

vue3项目搭建-6-axios 基础配置
axios 基础配置 安装 axios npm install axios 创建 axios 实例,配置基地址,配置拦截器,目录:utils/http.js 基地址:在每次访问时,自动作为相对路径的根 // axios 基础封装 import axios from "axios";…...

Django 视图层
from django.shortcuts import render, HttpResponse, redirectfrom django.http import JsonResponse1. render: 渲染模板 def index(request):print(reverse(index))return render(request, "index.html")return render(request, index.html, context{name: lisi})…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...