12.02 深度学习-卷积
# 卷积 是用于图像处理 能够保存图像的一些特征 卷积层 如果用全连接神经网络处理图像 计算价格太大了 图像也被转为线性的对象导致失去了图像的空间特征 只有在卷积神经网络cnn的最后一层使用全连接神经网络
# 图像处理的三大任务
# 目标检测 对图像中的目标进行框出来
# 图像分割
# 图像分类
# 卷积核的参数是要变的 这个值有个最优解 线性回归求这个最优解
# 卷积的计算 先卷再积 卷 左右上下移动 积 对应位置矩阵 对应位置相乘再相加 最后得到一个特征矩阵跟卷积结果一样的size
# import os
# current_path=os.path.dirname(__file__) # 将脚本文件所在的目录路径赋值给变量 current_path, 所在文件夹路径
# path2=os.path.relpath(路径1) # 获取路径1 文件到当前文件的相对路径
# 在神经网络中加入卷积层 为卷积神经网络 cnn
# cv2读 图像 然后 torch创建卷积核
import os
import cv2
from torch import nn
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
def demo1():
path="assets/1.png"
# print(path)
# 读取图像
img=cv2.imread(path)
# 创建卷积核 一个卷积核就是卷积层
conv=nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,stride=1,padding=0) # 传入输入图像的通道数 和输出的特征图数量 卷积核大小 步长(卷积核移动的规格) 填充
# 这个会自动初始化一个卷积和的参数
# conv(图像tensor数组) 传入图像进行卷积 得到特征图 tensor 的应该为 n,c,h,w 或者c,h,w
# 传入图像的通道数应该跟in_channels一致 且数据类型为tensor.float
# 转为tensor,并归一化到[0, 1]
img = torch.tensor(img, dtype=torch.float32) / 255.0
# 转换维度
img=img.permute(2,0,1).unsqueeze(0)
# print(img.shape)
# 卷积
img=conv(img) # 卷积操作的tensor 必须为float
# print(img.shape)
# 用 plt 显示出来
plt.imshow(img[0][0].detach().numpy(),cmap="gray")
plt.show()
pass
def demo2():
# 一个四通道的图像 通过卷积核处理 这个卷积核应该也有四个通道 对应处理rgba 也可以说是4个卷积核吧 然后 每个通道进行卷积 然后加起来 为一个特征图 输出多个特征图 就要有多个卷积核每个卷积核参数不一样
# 然后再卷积的话 上面输出的特征图数量就会被下一个卷积和当做通道
# 如果 一个四通道的卷积核 核大小为3 且有偏置 如果输出32和特征图 那么有 32*4*3*3+32 个参数 特征图数量*每个卷积核的通道数 *卷积核的规格 +偏置数 每一个卷积核对应1个偏置
# 输出多个特征图 后面每一个特征图 对图像注意的地方不同
# 边缘填充: 通过上面的卷积计算,我们发现最终的特征图比原始图像要小,如果想要保持图像大小不变, 可在原图周围添加padding来实现。更重要的,边缘填充还更好的保护了图像边缘数据的特征。
# 让边缘的数据利用更充分 在原图上进行边缘填充
# 卷积结果 特征图的大小的计算 (W-F+2P) / S +1 W:图像的大小 W*W 卷积核大小F*F 边缘填充 P 步长:S 宽高不一样就各自算各自的 宽高 都带一遍公式
pass
# 构建卷积神经网络
def demo3():
class MyNet(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# 卷积层
self.conv1=nn.Conv2d(in_channels=1,out_channels=32,kernel_size=3,stride=1,padding=0)
self.conv2=nn.Conv2d(in_channels=32,out_channels=128,kernel_size=3,stride=1,padding=0)
self.conv3=nn.Conv2d(in_channels=128,out_channels=512,kernel_size=3,stride=1,padding=0)
# 线性层 线性层的输入是 特征的数量 特征的总数量是不是 图片数乘图片规格 表示每一个特征图的每个点啊
self.fc=nn.Linear(512*26*26,10)
# 前向传播
def forward(self,x):
# 每一层用激活函数激活
x=F.relu(self.conv1(x))
x=F.relu(self.conv2(x))
x=F.relu(self.conv3(x))
# 线性层全连接输出 先展平为2维 因为线性层输入是一个二维的矩阵
x=x.view(x.shape[0],-1) # x.size(0):这部分获取x的第0维的大小。在PyTorch中,张量的维度通常按照以下顺序表示
# x.view(x.size(0),-1):这个操作将x重塑为一个新的形状,其中第0维(batch_size)保持不变,而其他维度被“展平”(flattened)为一个长向量。这是在很多神经网络架构中常见的操作,
# 特别是在将卷积层的输出传递给全连接层(fully connected layer)之前。因为全连接层期望的输入是一个二维张量,其中第一维是批次大小,第二维是每个样本的特征数量。
return F.softmax(self.fc(x))
net1=MyNet()
input=torch.randn(4,1,32,32,dtype=torch.float32)
output=net1.forward(input)
print(output)
# 卷积参数共享
# 卷积神经网络只考虑卷积核的参数 以卷积核为单位 全链接 以每一个节点为单位而且还要与上层全链接 参数个数直接爆炸
# 卷积就是把这些数据放到多个维度上单维度的数量就少了
if __name__=="__main__":
# demo1()
# demo2()
demo3()
pass
相关文章:
12.02 深度学习-卷积
# 卷积 是用于图像处理 能够保存图像的一些特征 卷积层 如果用全连接神经网络处理图像 计算价格太大了 图像也被转为线性的对象导致失去了图像的空间特征 只有在卷积神经网络cnn的最后一层使用全连接神经网络 # 图像处理的三大任务 # 目标检测 对图像中的目标进行框出来 # 图…...
MySQL 主从同步一致性详解
MySQL主从同步是一种数据复制技术,它允许数据从一个数据库服务器(主服务器)自动同步到一个或多个数据库服务器(从服务器)。这种技术主要用于实现读写分离、提升数据库性能、容灾恢复以及数据冗余备份等目的。下面将详细…...
Spring源码导入idea时gradle构建慢问题
当我们将spring源码导入到idea进行构建的时候,spring采用的是gradle进行构建,默认下注在依赖是从https://repo.maven.apache.org会特别慢,需要改为国内的镜像地址会加快速度。 将项目中build.gradle配置进行调整: repositories …...
Dockerfile 安装echarts插件给java提供服务
java调用echarts插件,生成图片保存到磁盘然后插入到pptx中报表。 Dockerfile文件内容: #基础镜像,如果本地仓库没有,会从远程仓库拉取 openjdk:8 FROM docker.io/centos:centos7 #暴露端口 EXPOSE 9311 # 避免centos 日志输出 …...
Springboot小知识(1):启动类与配置
一、启动类(引导类) 在通常情况下,你创建的Spring应用项目都会为你自动生成一个启动类,它是这个应用的起点。 在Spring Boot中,引导类(也称为启动类,通常是main方法所在的类)是整个…...
[CISCN 2019华东南]Web11
[CISCN 2019华东南]Web11 给了两个链接但是都无法访问 这里我们直接抓包试一下 我们插入X-Forwarded-For:127.0.0.1 发现可以修改了右上角的IP地址,从而可以进行注入 {$smarty.version} 查看版本号 if标签执行PHP命令 {if phpinfo()}{/if} 查看协议 {if system(…...
Cypress内存溢出奔溃问题汇总
内存溢出报错信息 <--- Last few GCs ---> [196:0xe58001bc000] 683925 ms: Scavenge 1870.7 (1969.9) -> 1865.6 (1969.9) MB, 6.07 / 0.00 ms (average mu 0.359, current mu 0.444) task; [196:0xe58001bc000] 683999 ms: Scavenge 1872.4 (1969.9) -> 1867.1…...
树莓派4B--OpenCV安装踩坑
报错: Source directory: /tmp/pip-install-pv7l9r25/opencv-python_08fdf5a130a5429f89b0e0eaab39a329 Working directory: /tmp/pip-install-pv7l9r25/opencv-python_08fdf5a130a5429f89b0e0eaab39a329/_skbuild/linux-armv7l-3.7/cmake-build Please check the i…...
电子电气架构 --- 面向服务的汽车诊断架构
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所有人的看法和评价都是暂时的,只有自己的经历是伴随一生的,几乎所有的担忧和畏惧,都是来源于自己的想象,只有你真的去做了,才会发现有多快乐。…...
Pytest --capture 参数详解:如何控制测试执行过程中的输出行为
--capture 选项用于控制测试用例执行过程中标准输出(stdout)和标准错误输出(stderr)的捕获行为。 --capture 的选项值: fd(默认) 捕获文件描述符级别的输出(stdout 和 stderr&#x…...
IS-IS的原理
IS-IS的基本概念: 概述: IS-IS,中间系统到中间系统,是ISO国际标准化组织为它的无连接网络协议设计的一种动态路由协议 IS-IS支持CLNP网络和IP网络,采用数据链路层封装,区别于ospf只支持IP网络࿰…...
C++(4个类型转换)
1. C语言中的类型转换 1. 隐式 类型转换: 具有相近的类型才能进行互相转换,如:int,char,double都表示数值。 2. 强制类型转换:能隐式类型转换就能强制类型转换,隐式类型之间的转换类型强相关,强制类型转换…...
Ubuntu20.04安装NVIDIA显卡驱动
Ubuntu20.04安装NVIDIA显卡驱动 参考资料:https://blog.csdn.net/weixin_39244242/article/details/136282614?fromshareblogdetail&sharetypeblogdetail&sharerId136282614&sharereferPC&sharesourceqq_37397652&sharefromfrom_link 成功配置…...
速盾:介绍一下高防cdn的缓存响应事什么功能?
高防CDN(Content Delivery Network)是一种基于分布式缓存技术的网络加速服务,能够提供强大的缓存响应功能。它的缓存响应功能主要包括缓存加速和智能缓存两个方面。 首先,高防CDN的缓存加速功能是指通过在全球范围内部署大量的缓…...
Nuclei-快速漏洞扫描器
Nuclei-快速漏洞扫描器 声明 学习内容来自 B 站UP主泷羽sec,如涉及侵权马上删除文章。 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负。 ✍Ἷ…...
linux网络抓包工具
linux网络抓包工具 一、tcpdump1.1 基本用法1.2 龙芯平台实例操作 二、wireshark2.1 主要功能2.2 龙芯平台实例操作 一、tcpdump tcpdump 指令可列出经过指定网络界面的数据包文件头,可以将网络中传送的数据包的 “头” 完全截获下来提供分析。它支持针对网络层、协…...
详解桥接模式
引言 在开发过程中,可能会遇到系统设计有多种维度变化的情况,比如我们想画一幅五彩斑斓的画,需要用到12个颜色,但是需要粗细不同的线条(粗、中、细),如果用蜡笔,就需要粗中细三种蜡笔…...
探索AI新世界!热门工具与学习资源免费获取
抖知书老师推荐: 人工智能技术的迅速发展让人们既充满期待又有些迷茫。有人担忧被AI技术取代,有人却积极拥抱这场科技浪潮。无论你处于哪种心态,人工智能已经深入到我们生活的方方面面。如果你希望轻松掌握最新的AI工具与动态,…...
vue3项目搭建-6-axios 基础配置
axios 基础配置 安装 axios npm install axios 创建 axios 实例,配置基地址,配置拦截器,目录:utils/http.js 基地址:在每次访问时,自动作为相对路径的根 // axios 基础封装 import axios from "axios";…...
Django 视图层
from django.shortcuts import render, HttpResponse, redirectfrom django.http import JsonResponse1. render: 渲染模板 def index(request):print(reverse(index))return render(request, "index.html")return render(request, index.html, context{name: lisi})…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果.ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...
