当前位置: 首页 > news >正文

TIE算法具体求解-为什么是泊松方程和傅里叶变换

二维泊松方程的通俗理解

二维泊松方程 是偏微分方程的一种形式,通常用于描述空间中某个标量场(如位相场、电势场)的分布规律。其一般形式为:

∇ 2 ϕ ( x , y ) = f ( x , y ) \nabla^2 \phi(x, y) = f(x, y) 2ϕ(x,y)=f(x,y)

其中:

  • ϕ ( x , y ) \phi(x, y) ϕ(x,y) 是需要求解的标量场,例如 TIE 方程中的相位分布。
  • f ( x , y ) f(x, y) f(x,y) 是已知的源项,表示某种驱动或者分布,如光强的变化率。
物理直观:

二维泊松方程的物理意义可以通过类比来理解:

  • 热传导 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 表示温度分布, f ( x , y ) f(x, y) f(x,y) 是热源强度分布。
  • 重力势 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 表示引力势, f ( x , y ) f(x, y) f(x,y) 是质量密度分布。
  • 光学相位:在 TIE 中, ϕ ( x , y ) \phi(x, y) ϕ(x,y) 是光场的相位分布, f ( x , y ) f(x, y) f(x,y) 是由光强变化产生的“驱动力”。

换句话说,泊松方程将一种“局部变化”( ∇ 2 ϕ \nabla^2 \phi 2ϕ)与“全局驱动力”( f ( x , y ) f(x, y) f(x,y))联系起来。


TIE 转化为泊松方程的形式

对于 TIE 方程:

∂ I ( x , y , z ) ∂ z = − λ 2 π ∇ ⊥ ⋅ ( I ( x , y , z ) ∇ ⊥ ϕ ( x , y , z ) ) \frac{\partial I(x, y, z)}{\partial z} = -\frac{\lambda}{2\pi} \nabla_\perp \cdot \left( I(x, y, z) \nabla_\perp \phi(x, y, z) \right) zI(x,y,z)=2πλ(I(x,y,z)ϕ(x,y,z))

可以将其重写为泊松方程的形式:

∇ ⊥ ⋅ ( I ( x , y ) ∇ ⊥ ϕ ( x , y ) ) = − 2 π λ ∂ I ∂ z \nabla_\perp \cdot \left( I(x, y) \nabla_\perp \phi(x, y) \right) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} (I(x,y)ϕ(x,y))=λ2πzI

g ( x , y ) = I ( x , y ) ∇ ⊥ ϕ ( x , y ) g(x, y) = I(x, y) \nabla_\perp \phi(x, y) g(x,y)=I(x,y)ϕ(x,y) 引入后,有:
∇ ⊥ ⋅ g ( x , y ) = − 2 π λ ∂ I ∂ z \nabla_\perp \cdot g(x, y) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} g(x,y)=λ2πzI

进一步转化为标准泊松方程形式:
∇ 2 ϕ ( x , y ) = f ( x , y ) I ( x , y ) \nabla^2 \phi(x, y) = \frac{f(x, y)}{I(x, y)} 2ϕ(x,y)=I(x,y)f(x,y)
其中 f ( x , y ) = − 2 π λ ∂ I ∂ z f(x, y) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} f(x,y)=λ2πzI


傅里叶变换求解泊松方程

1. 为什么用傅里叶变换解泊松方程?

泊松方程涉及 空间梯度(如 ∇ 2 \nabla^2 2,即拉普拉斯算子)。傅里叶变换在数学上有一个重要特性:

  • 微分变为乘法:在频域中,拉普拉斯算子 ∇ 2 \nabla^2 2 对应的是空间频率平方的乘积 − k x 2 − k y 2 -k_x^2 - k_y^2 kx2ky2
  • 这使得方程从微分方程变成代数方程,简化了求解过程。
2. 傅里叶变换的过程

泊松方程:
∇ 2 ϕ ( x , y ) = f ( x , y ) \nabla^2 \phi(x, y) = f(x, y) 2ϕ(x,y)=f(x,y)

对两边做傅里叶变换(记为 F \mathcal{F} F),得:
F ( ∇ 2 ϕ ) = F ( f ) \mathcal{F}(\nabla^2 \phi) = \mathcal{F}(f) F(2ϕ)=F(f)

利用傅里叶变换的性质, F ( ∇ 2 ϕ ) = − ( k x 2 + k y 2 ) ⋅ F ( ϕ ) \mathcal{F}(\nabla^2 \phi) = -(k_x^2 + k_y^2) \cdot \mathcal{F}(\phi) F(2ϕ)=(kx2+ky2)F(ϕ),因此:
− ( k x 2 + k y 2 ) Φ ( k x , k y ) = F ( k x , k y ) -(k_x^2 + k_y^2) \Phi(k_x, k_y) = F(k_x, k_y) (kx2+ky2)Φ(kx,ky)=F(kx,ky)

其中:

  • Φ ( k x , k y ) \Phi(k_x, k_y) Φ(kx,ky):相位 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 在频域中的表示。
  • F ( k x , k y ) F(k_x, k_y) F(kx,ky) f ( x , y ) f(x, y) f(x,y) 在频域中的表示。

解得:
Φ ( k x , k y ) = − F ( k x , k y ) k x 2 + k y 2 \Phi(k_x, k_y) = -\frac{F(k_x, k_y)}{k_x^2 + k_y^2} Φ(kx,ky)=kx2+ky2F(kx,ky)

3. 避免分母为零的问题

k x 2 + k y 2 = 0 k_x^2 + k_y^2 = 0 kx2+ky2=0 时(即零频点处),分母为零。这通常对应光场整体的平均相位,这一部分可以忽略或通过设定边界条件解决。例如,直接将零频点处的值置为零:

Φ ( 0 , 0 ) = 0 \Phi(0, 0) = 0 Φ(0,0)=0

4. 逆傅里叶变换回到空间域

通过逆傅里叶变换( F − 1 \mathcal{F}^{-1} F1),将 Φ ( k x , k y ) \Phi(k_x, k_y) Φ(kx,ky) 转换回相位分布:
ϕ ( x , y ) = F − 1 ( Φ ( k x , k y ) ) \phi(x, y) = \mathcal{F}^{-1}(\Phi(k_x, k_y)) ϕ(x,y)=F1(Φ(kx,ky))


总结:为什么可以这么做

  1. 傅里叶变换的优点

    • 将复杂的微分操作转化为频域中的简单乘法,显著简化了解泊松方程的计算难度。
    • 频域方法特别适合求解涉及大范围数据的连续问题,如图像中的相位分布。
  2. 数学上的严谨性

    • 傅里叶变换和逆变换是完全可逆的,保证了从空间域到频域再回到空间域的信息一致性。
  3. 频率分析的物理意义

    • 相位梯度和强度变化在本质上是一种空间频率特征,而傅里叶变换就是对这种频率信息的自然表示。

通过傅里叶变换解泊松方程,不仅是数值上的优化,更是利用了物理和数学上的深层对应关系。

相关文章:

TIE算法具体求解-为什么是泊松方程和傅里叶变换

二维泊松方程的通俗理解 二维泊松方程 是偏微分方程的一种形式,通常用于描述空间中某个标量场(如位相场、电势场)的分布规律。其一般形式为: ∇ 2 ϕ ( x , y ) f ( x , y ) \nabla^2 \phi(x, y) f(x, y) ∇2ϕ(x,y)f(x,y) 其…...

postman中获取随机数、唯一ID、时间日期(包括当前日期增减)截取指定位数的字符等

在Postman中,您可以使用内置的动态变量和编写脚本的方式来获取随机数、唯一ID、时间日期以及截取指定位数的字符。以下是具体的操作方法: 一、postman中获取随机数、唯一ID、时间日期(包括当前日期增减)截取指定位数的字符等 获取…...

【计算机网络】实验3:集线器和交换器的区别及交换器的自学习算法

实验 3:集线器和交换器的区别及交换器的自学习算法 一、 实验目的 加深对集线器和交换器的区别的理解。 了解交换器的自学习算法。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实验内容 1、熟悉集线器和交换器的区别 (1) 第一步:构建网络…...

flink学习(14)—— 双流join

概述 Join:内连接 CoGroup:内连接,左连接,右连接 Interval Join:点对面 Join 1、Join 将有相同 Key 并且位于同一窗口中的两条流的元素进行关联。 2、Join 可以支持处理时间(processing time)和事件时…...

HTTP协议详解:从HTTP/1.0到HTTP/3的演变与优化

深入浅出:从头到尾全面解析HTTP协议 一、HTTP协议概述 1.1 HTTP协议简介 HTTP(HyperText Transfer Protocol,超文本传输协议)是互联网上应用最广泛的通信协议之一。它用于客户端与服务器之间的数据传输,尤其是在Web…...

张量并行和流水线并行在Transformer中的具体部位

目录 张量并行和流水线并行在Transformer中的具体部位 一、张量并行 二、流水线并行 张量并行和流水线并行在Transformer中的具体部位 张量并行和流水线并行是Transformer模型中用于提高训练效率的两种并行策略。它们分别作用于模型的不同部位,以下是对这两种并行的具体说…...

WEB开发: 丢掉包袱,拥抱ASP.NET CORE!

今天的 Web 开发可以说进入了一个全新的时代,前后端分离、云原生、微服务等等一系列现代技术架构应运而生。在这个背景下,作为开发者,你一定希望找到一个高效、灵活、易于扩展且具有良好性能的框架。那么,ASP.NET Core 显然是一个…...

【论文阅读】Federated learning backdoor attack detection with persistence diagram

目的:检测联邦学习环境下,上传上来的模型是不是恶意的。 1、将一个模型转换为|L|个PD,(其中|L|为层数) 如何将每一层转换成一个PD? 为了评估第𝑗层的激活值,我们需要𝑐个输入来获…...

Gooxi Eagle Stream 2U双路通用服务器:性能强劲 灵活扩展 稳定易用

人工智能的高速发展开启了飞轮效应,实施数字化变革成为了企业的一道“抢答题”和“必答题”,而数据已成为现代企业的命脉。以HPC和AI为代表的新业务就像节节攀高的树梢,象征着业务创新和企业成长。但在树梢之下,真正让企业保持成长…...

【计算机网络】实验2:总线型以太网的特性

实验 2:总线型以太网的特性 一、 实验目的 加深对MAC地址,IP地址,ARP协议的理解。 了解总线型以太网的特性(广播,竞争总线,冲突)。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实…...

如何在Spark中使用gbdt模型分布式预测

这目录 1 训练gbdt模型2 第三方包python环境打包3 Spark中使用gbdt模型3.1 spark配置文件3.2 主函数main.py 4 spark任务提交 1 训练gbdt模型 我们可以基于lightgbm快速的训练一个gbdt模型,训练相对比较简单,只要把训练样本处理好,几行代码可…...

Qt-5.14.2 example

官方历程很丰富,modbus、串口、chart图表、3D、视频 共享方便使用 Building and Running an Example You can test that your Qt installation is successful by opening an existing example application project. To run an example application on an Android …...

virtualbox给Ubuntu22创建共享文件夹

1.在windows上的操作,创建共享文件夹Share 2.Ubuntu22上的操作,创建共享文件夹LinuxShare 3.在virtualbox虚拟机设置里,设置共享文件夹 共享文件夹路径:选择Windows系统中你需要共享的文件夹 共享文件夹名称:挂载至wi…...

GPT打字机效果—— fetchEventSouce进行sse流式请求

EventStream基本用法 与 WebSocket 不同的是,服务器发送事件是单向的。数据消息只能从服务端到发送到客户端(如用户的浏览器)。这使其成为不需要从客户端往服务器发送消息的情况下的最佳选择。 const evtSource new EventSource(“/api/v1/…...

SpringBoot 在线家具商城:设计考量与实现细节聚焦

第4章 系统设计 市面上设计比较好的系统都有一个共同特征,就是主题鲜明突出。通过对页面简洁清晰的布局,让页面的内容,包括文字语言,或者视频图片等元素可以清晰表达出系统的主题。让来访用户无需花费过多精力和时间找寻需要的内容…...

每日速记10道java面试题07

其他资料: 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 每日速记10道java面试题03-CSDN博客 每日速记10道java面试题04-CSDN博客 每日速记10道java面试题05-CSDN博客 每日速记10道java面试题06-CSDN博客 目录 1.线程的生命周期在j…...

前端面试热门题(二)[html\css\js\node\vue)

Vue 性能优化的方法 Vue 性能优化的方法多种多样,以下是一些常用的策略: 使用v-show替换v-if:v-show是通过CSS控制元素的显示与隐藏,而v-if是通过操作DOM来控制元素的显示与隐藏,频繁操作DOM会导致性能下降。因此&am…...

mvc基础及搭建一个静态网站

mvc asp.net core mvc环境 .net8vscode * Asp.Net Core 基础* .net8* 前辈* .net 4.9 非跨平台版本 VC* 跨平台版本* 1.0* 2.0* 2.1* 3.1* 5* 语言* C#* F# * Visual Basic* 框架* web应用* asp应用* WebFrom* mvc应用* 桌面应用* Winform* WPF* Web Api api应用或者叫服务* …...

AOSP的同步问题

repo sync同步时提示出错: error: .repo/manifests/: contains uncommitted changesRepo command failed due to the following UpdateManifestError errors: contains uncommitted changes解决方法: 1、cd 进入.repo/manifests cd .repo/manifests2、执行如下三…...

HarmonyOS4+NEXT星河版入门与项目实战(23)------实现手机游戏摇杆功能

文章目录 1、案例效果2、案例实现1、代码实现2、代码解释4、总结1、案例效果 2、案例实现 1、代码实现 代码如下(示例): import router from @ohos.router import {ResizeDirection } from @ohos.UiTest import curves...

龙虎榜——20250610

上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...