当前位置: 首页 > news >正文

TIE算法具体求解-为什么是泊松方程和傅里叶变换

二维泊松方程的通俗理解

二维泊松方程 是偏微分方程的一种形式,通常用于描述空间中某个标量场(如位相场、电势场)的分布规律。其一般形式为:

∇ 2 ϕ ( x , y ) = f ( x , y ) \nabla^2 \phi(x, y) = f(x, y) 2ϕ(x,y)=f(x,y)

其中:

  • ϕ ( x , y ) \phi(x, y) ϕ(x,y) 是需要求解的标量场,例如 TIE 方程中的相位分布。
  • f ( x , y ) f(x, y) f(x,y) 是已知的源项,表示某种驱动或者分布,如光强的变化率。
物理直观:

二维泊松方程的物理意义可以通过类比来理解:

  • 热传导 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 表示温度分布, f ( x , y ) f(x, y) f(x,y) 是热源强度分布。
  • 重力势 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 表示引力势, f ( x , y ) f(x, y) f(x,y) 是质量密度分布。
  • 光学相位:在 TIE 中, ϕ ( x , y ) \phi(x, y) ϕ(x,y) 是光场的相位分布, f ( x , y ) f(x, y) f(x,y) 是由光强变化产生的“驱动力”。

换句话说,泊松方程将一种“局部变化”( ∇ 2 ϕ \nabla^2 \phi 2ϕ)与“全局驱动力”( f ( x , y ) f(x, y) f(x,y))联系起来。


TIE 转化为泊松方程的形式

对于 TIE 方程:

∂ I ( x , y , z ) ∂ z = − λ 2 π ∇ ⊥ ⋅ ( I ( x , y , z ) ∇ ⊥ ϕ ( x , y , z ) ) \frac{\partial I(x, y, z)}{\partial z} = -\frac{\lambda}{2\pi} \nabla_\perp \cdot \left( I(x, y, z) \nabla_\perp \phi(x, y, z) \right) zI(x,y,z)=2πλ(I(x,y,z)ϕ(x,y,z))

可以将其重写为泊松方程的形式:

∇ ⊥ ⋅ ( I ( x , y ) ∇ ⊥ ϕ ( x , y ) ) = − 2 π λ ∂ I ∂ z \nabla_\perp \cdot \left( I(x, y) \nabla_\perp \phi(x, y) \right) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} (I(x,y)ϕ(x,y))=λ2πzI

g ( x , y ) = I ( x , y ) ∇ ⊥ ϕ ( x , y ) g(x, y) = I(x, y) \nabla_\perp \phi(x, y) g(x,y)=I(x,y)ϕ(x,y) 引入后,有:
∇ ⊥ ⋅ g ( x , y ) = − 2 π λ ∂ I ∂ z \nabla_\perp \cdot g(x, y) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} g(x,y)=λ2πzI

进一步转化为标准泊松方程形式:
∇ 2 ϕ ( x , y ) = f ( x , y ) I ( x , y ) \nabla^2 \phi(x, y) = \frac{f(x, y)}{I(x, y)} 2ϕ(x,y)=I(x,y)f(x,y)
其中 f ( x , y ) = − 2 π λ ∂ I ∂ z f(x, y) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} f(x,y)=λ2πzI


傅里叶变换求解泊松方程

1. 为什么用傅里叶变换解泊松方程?

泊松方程涉及 空间梯度(如 ∇ 2 \nabla^2 2,即拉普拉斯算子)。傅里叶变换在数学上有一个重要特性:

  • 微分变为乘法:在频域中,拉普拉斯算子 ∇ 2 \nabla^2 2 对应的是空间频率平方的乘积 − k x 2 − k y 2 -k_x^2 - k_y^2 kx2ky2
  • 这使得方程从微分方程变成代数方程,简化了求解过程。
2. 傅里叶变换的过程

泊松方程:
∇ 2 ϕ ( x , y ) = f ( x , y ) \nabla^2 \phi(x, y) = f(x, y) 2ϕ(x,y)=f(x,y)

对两边做傅里叶变换(记为 F \mathcal{F} F),得:
F ( ∇ 2 ϕ ) = F ( f ) \mathcal{F}(\nabla^2 \phi) = \mathcal{F}(f) F(2ϕ)=F(f)

利用傅里叶变换的性质, F ( ∇ 2 ϕ ) = − ( k x 2 + k y 2 ) ⋅ F ( ϕ ) \mathcal{F}(\nabla^2 \phi) = -(k_x^2 + k_y^2) \cdot \mathcal{F}(\phi) F(2ϕ)=(kx2+ky2)F(ϕ),因此:
− ( k x 2 + k y 2 ) Φ ( k x , k y ) = F ( k x , k y ) -(k_x^2 + k_y^2) \Phi(k_x, k_y) = F(k_x, k_y) (kx2+ky2)Φ(kx,ky)=F(kx,ky)

其中:

  • Φ ( k x , k y ) \Phi(k_x, k_y) Φ(kx,ky):相位 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 在频域中的表示。
  • F ( k x , k y ) F(k_x, k_y) F(kx,ky) f ( x , y ) f(x, y) f(x,y) 在频域中的表示。

解得:
Φ ( k x , k y ) = − F ( k x , k y ) k x 2 + k y 2 \Phi(k_x, k_y) = -\frac{F(k_x, k_y)}{k_x^2 + k_y^2} Φ(kx,ky)=kx2+ky2F(kx,ky)

3. 避免分母为零的问题

k x 2 + k y 2 = 0 k_x^2 + k_y^2 = 0 kx2+ky2=0 时(即零频点处),分母为零。这通常对应光场整体的平均相位,这一部分可以忽略或通过设定边界条件解决。例如,直接将零频点处的值置为零:

Φ ( 0 , 0 ) = 0 \Phi(0, 0) = 0 Φ(0,0)=0

4. 逆傅里叶变换回到空间域

通过逆傅里叶变换( F − 1 \mathcal{F}^{-1} F1),将 Φ ( k x , k y ) \Phi(k_x, k_y) Φ(kx,ky) 转换回相位分布:
ϕ ( x , y ) = F − 1 ( Φ ( k x , k y ) ) \phi(x, y) = \mathcal{F}^{-1}(\Phi(k_x, k_y)) ϕ(x,y)=F1(Φ(kx,ky))


总结:为什么可以这么做

  1. 傅里叶变换的优点

    • 将复杂的微分操作转化为频域中的简单乘法,显著简化了解泊松方程的计算难度。
    • 频域方法特别适合求解涉及大范围数据的连续问题,如图像中的相位分布。
  2. 数学上的严谨性

    • 傅里叶变换和逆变换是完全可逆的,保证了从空间域到频域再回到空间域的信息一致性。
  3. 频率分析的物理意义

    • 相位梯度和强度变化在本质上是一种空间频率特征,而傅里叶变换就是对这种频率信息的自然表示。

通过傅里叶变换解泊松方程,不仅是数值上的优化,更是利用了物理和数学上的深层对应关系。

相关文章:

TIE算法具体求解-为什么是泊松方程和傅里叶变换

二维泊松方程的通俗理解 二维泊松方程 是偏微分方程的一种形式,通常用于描述空间中某个标量场(如位相场、电势场)的分布规律。其一般形式为: ∇ 2 ϕ ( x , y ) f ( x , y ) \nabla^2 \phi(x, y) f(x, y) ∇2ϕ(x,y)f(x,y) 其…...

postman中获取随机数、唯一ID、时间日期(包括当前日期增减)截取指定位数的字符等

在Postman中,您可以使用内置的动态变量和编写脚本的方式来获取随机数、唯一ID、时间日期以及截取指定位数的字符。以下是具体的操作方法: 一、postman中获取随机数、唯一ID、时间日期(包括当前日期增减)截取指定位数的字符等 获取…...

【计算机网络】实验3:集线器和交换器的区别及交换器的自学习算法

实验 3:集线器和交换器的区别及交换器的自学习算法 一、 实验目的 加深对集线器和交换器的区别的理解。 了解交换器的自学习算法。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实验内容 1、熟悉集线器和交换器的区别 (1) 第一步:构建网络…...

flink学习(14)—— 双流join

概述 Join:内连接 CoGroup:内连接,左连接,右连接 Interval Join:点对面 Join 1、Join 将有相同 Key 并且位于同一窗口中的两条流的元素进行关联。 2、Join 可以支持处理时间(processing time)和事件时…...

HTTP协议详解:从HTTP/1.0到HTTP/3的演变与优化

深入浅出:从头到尾全面解析HTTP协议 一、HTTP协议概述 1.1 HTTP协议简介 HTTP(HyperText Transfer Protocol,超文本传输协议)是互联网上应用最广泛的通信协议之一。它用于客户端与服务器之间的数据传输,尤其是在Web…...

张量并行和流水线并行在Transformer中的具体部位

目录 张量并行和流水线并行在Transformer中的具体部位 一、张量并行 二、流水线并行 张量并行和流水线并行在Transformer中的具体部位 张量并行和流水线并行是Transformer模型中用于提高训练效率的两种并行策略。它们分别作用于模型的不同部位,以下是对这两种并行的具体说…...

WEB开发: 丢掉包袱,拥抱ASP.NET CORE!

今天的 Web 开发可以说进入了一个全新的时代,前后端分离、云原生、微服务等等一系列现代技术架构应运而生。在这个背景下,作为开发者,你一定希望找到一个高效、灵活、易于扩展且具有良好性能的框架。那么,ASP.NET Core 显然是一个…...

【论文阅读】Federated learning backdoor attack detection with persistence diagram

目的:检测联邦学习环境下,上传上来的模型是不是恶意的。 1、将一个模型转换为|L|个PD,(其中|L|为层数) 如何将每一层转换成一个PD? 为了评估第𝑗层的激活值,我们需要𝑐个输入来获…...

Gooxi Eagle Stream 2U双路通用服务器:性能强劲 灵活扩展 稳定易用

人工智能的高速发展开启了飞轮效应,实施数字化变革成为了企业的一道“抢答题”和“必答题”,而数据已成为现代企业的命脉。以HPC和AI为代表的新业务就像节节攀高的树梢,象征着业务创新和企业成长。但在树梢之下,真正让企业保持成长…...

【计算机网络】实验2:总线型以太网的特性

实验 2:总线型以太网的特性 一、 实验目的 加深对MAC地址,IP地址,ARP协议的理解。 了解总线型以太网的特性(广播,竞争总线,冲突)。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实…...

如何在Spark中使用gbdt模型分布式预测

这目录 1 训练gbdt模型2 第三方包python环境打包3 Spark中使用gbdt模型3.1 spark配置文件3.2 主函数main.py 4 spark任务提交 1 训练gbdt模型 我们可以基于lightgbm快速的训练一个gbdt模型,训练相对比较简单,只要把训练样本处理好,几行代码可…...

Qt-5.14.2 example

官方历程很丰富,modbus、串口、chart图表、3D、视频 共享方便使用 Building and Running an Example You can test that your Qt installation is successful by opening an existing example application project. To run an example application on an Android …...

virtualbox给Ubuntu22创建共享文件夹

1.在windows上的操作,创建共享文件夹Share 2.Ubuntu22上的操作,创建共享文件夹LinuxShare 3.在virtualbox虚拟机设置里,设置共享文件夹 共享文件夹路径:选择Windows系统中你需要共享的文件夹 共享文件夹名称:挂载至wi…...

GPT打字机效果—— fetchEventSouce进行sse流式请求

EventStream基本用法 与 WebSocket 不同的是,服务器发送事件是单向的。数据消息只能从服务端到发送到客户端(如用户的浏览器)。这使其成为不需要从客户端往服务器发送消息的情况下的最佳选择。 const evtSource new EventSource(“/api/v1/…...

SpringBoot 在线家具商城:设计考量与实现细节聚焦

第4章 系统设计 市面上设计比较好的系统都有一个共同特征,就是主题鲜明突出。通过对页面简洁清晰的布局,让页面的内容,包括文字语言,或者视频图片等元素可以清晰表达出系统的主题。让来访用户无需花费过多精力和时间找寻需要的内容…...

每日速记10道java面试题07

其他资料: 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 每日速记10道java面试题03-CSDN博客 每日速记10道java面试题04-CSDN博客 每日速记10道java面试题05-CSDN博客 每日速记10道java面试题06-CSDN博客 目录 1.线程的生命周期在j…...

前端面试热门题(二)[html\css\js\node\vue)

Vue 性能优化的方法 Vue 性能优化的方法多种多样,以下是一些常用的策略: 使用v-show替换v-if:v-show是通过CSS控制元素的显示与隐藏,而v-if是通过操作DOM来控制元素的显示与隐藏,频繁操作DOM会导致性能下降。因此&am…...

mvc基础及搭建一个静态网站

mvc asp.net core mvc环境 .net8vscode * Asp.Net Core 基础* .net8* 前辈* .net 4.9 非跨平台版本 VC* 跨平台版本* 1.0* 2.0* 2.1* 3.1* 5* 语言* C#* F# * Visual Basic* 框架* web应用* asp应用* WebFrom* mvc应用* 桌面应用* Winform* WPF* Web Api api应用或者叫服务* …...

AOSP的同步问题

repo sync同步时提示出错: error: .repo/manifests/: contains uncommitted changesRepo command failed due to the following UpdateManifestError errors: contains uncommitted changes解决方法: 1、cd 进入.repo/manifests cd .repo/manifests2、执行如下三…...

HarmonyOS4+NEXT星河版入门与项目实战(23)------实现手机游戏摇杆功能

文章目录 1、案例效果2、案例实现1、代码实现2、代码解释4、总结1、案例效果 2、案例实现 1、代码实现 代码如下(示例): import router from @ohos.router import {ResizeDirection } from @ohos.UiTest import curves...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

快刀集(1): 一刀斩断视频片头广告

一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

嵌入式面试常问问题

以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...