当前位置: 首页 > news >正文

用于LiDAR测量的1.58um单芯片MOPA(一)

--翻译自M. Faugeron、M. Krakowski1等人2014年的文章

1.简介

如今,人们对高功率半导体器件的兴趣日益浓厚,这些器件主要用于遥测、激光雷达系统或自由空间通信等应用。与固态激光器相比,半导体器件更紧凑且功耗更低,这在低功率供电环境(如飞机或卫星)应用中非常重要。在800-1200 nm范围内,对于集成和自由空间主振荡器功率放大器(MOPA)[1]-[3],人们已经做了大量研究工作。对1.5 μm唯一商用的MOPA来自QPC [4],其光纤输出功率约为700mW,线宽为500 kHz。在本文中,第一部分我们首先给出了我们的模拟仿真结果,在第二部分,我们给出了1.58 μm MOPA的芯片垂直和水平结构设计,第三部份我们介绍了MOPA器件的制造,最后,第四部分我们展示了该MOPA器件的光学和电气测量结果。

2.器件仿真

A. MOPA架构

MOPA至少包括一个激光器和一个放大器。在FP7 Britespace项目中,我们开发了一个由分布式反馈激光器(DFB)、调制器和半导体光放大器(SOA)三部分组成的集成MOPA[5]。

其中DFB为窄线宽单模激光器,我们已经开发了这款DFB,其输出功率>150 mW,光线宽优于300 kHz [6]。

调制部分需要具有15 Mbit/s的调制带宽和10 dB消光比,我们使用 SOA的增益调制特性就可以实现,与电吸收调制器(EAM)相比,EAM需要特殊的材料(光致发光峰与激光有源区相比发生偏移),我们不需要任何特定的SOA有源区。

MOPA的最大输出功率将由 SOA 的饱和功率决定,为了获得尽可能大的输出功率,我们使用喇叭形 SOA。事实上,扩大有源区可以降低功率密度并增加最大输出功率[7]。

单芯片MOPA的最简单实现方式是将不同的单元部分沿直线顺序排布,如图1a所示[4][8]。这种方式结构简单,但端面反射(即使使用抗反射涂层)以及单元之间的反射较大,这会带来多腔效应,对DFB激光器产生干扰,这些影响在[8]中进行了详细讨论。

为了减少端面反射,一种改进的方法是使波导倾斜,如图1b[9],这在 SOA中非常常见的结构,缺点是由于倾斜,难以在DFB背面端面上制作有效的高反射涂层。

另一个方法是使用曲波导结构,如图1c[10],这个结构中,DFB 激光器是直的,调制部分是弯曲的,喇叭形 SOA 是倾斜的,该结构既减少了SOA端面反射,也使得 DFB背面涂层可更好的控制。缺点是弯曲造成的损失有不确定性。

添加图片注释,不超过 140 字(可选)

图1. 三种结构:a直MOPA, b斜MOPA, c曲MOPA

B.腔的本征模

在1.55μm处,磷化铟InP半导体结构中的主要损耗是由于P掺杂层中的价带间吸收 IVBA 造成的。为了提高光功率,需要减少限制,即光学模式与给定表面之间的重叠,以及有损的p掺杂层。麻省理工学院林肯实验室在各种发射波长下开发的一种创新方法包括使用不对称包层结构[7]:在有源区和衬底之间插入一层平板层,可以吸引光学模式并将其从p掺杂层中带走。这种结构被称为板耦合光波导SCOW。板层的折射率介于有源区折射率和衬底折射率之间。图2a显示了具有标准垂直结构的InP半导体腔的光学模式,该光学模式以量子阱QW为中心,用虚线表示,并均匀分布在p掺杂的InP层和n掺杂的InP层之间。图2b显示了具有板层结构(不对称包层结构)的腔的光学模式。在这种情况下,光学模式不再以有源区为中心,而是在有源区域下方。光学模式主要分布在n掺杂的板层上,只有一小部分模式分布在p掺杂层上。

添加图片注释,不超过 140 字(可选)

图 2. (a)无板结构的光学本征模态,(b)板厚为 2μm结构的光学本征模态。

表1给出了用自编计算光学模式软件使用的相应光学参数。我们清楚地看到了 2 μm 厚板层的影响:QW 的限制因子ΓQW 除以 3.5,对 p 掺杂 InP 的限制因子(Γp-InP) 除以 6。与p掺杂层的大量重叠减少是光学损耗降低的原因。QWs约束的减少将导致结构模态增益的降低:既要确保在腔模拟阶段与QWs有足够的重叠,以保持足够的模态增益,又要使用长腔。不对称包层结构允许扩大光学本征模态:我们可以看到这种对垂直发散角影响(表1)。这一点非常重要,因为大的光学模式相当于具有低发散度的光束,这有利于更好的耦合效率。

表1.模拟标准结构和不对称包层结构的光学参数。

添加图片注释,不超过 140 字(可选)

对于不对称的包层结构,板层材料的选择非常重要,主要是折射率影响。我们在图 3 中看到,板层折射率的变化对空特性模态的强烈影响。当板层折射率为3.20时,本征模态以有源区为中心,板层对本征模态的影响很小,如图3a。当板层折射率增加到3.25时,本征模态被板层增大并强烈变形,如图3b。对于较高的板透光折射率(n = 3.31),本征模态位于板层的中心,光学模态没有很好地限制,如图3c。

添加图片注释,不超过 140 字(可选)

图 3.用于使用 3 种不同板层的光学本征模态。

板层折射率需要介于有源区折射率(nAZ ≈ 3.5)和衬底折射率(nInP = 3.16)之间。板层的实现有两种方案:方案1,使用体材料。例如,它可以是具有适当光致发光峰的InGaAsP材料[7][11]。图2和图3中绘制的所有本征模态仿真都是针对具有板层的结构进行的。这种解决方案的缺点是,我们需要在外延中开发一种具有所需折射率的特定材料,例如InGaAsP四元材料,这导致了大量的外延校准和测试,另一个缺点是四元材料的导热性能较差,这不适用于高功率器件。方案2:用“稀释”材料代替体材料[6],它由多种材料(通常为两种材料)的薄层组成,“稀释”材料的折射率是各种材料指标的平均值乘其厚度加权,如图 4a。这种解决方案的优点在于,由于可以使用InP等标准材料和势垒材料来制作板层,而无需开发四元材料,还可以通过修改层的相对厚度来调整板层折射率,它可以更灵活的设计垂直结构。这一点在图4b和4c中得到了证明,我们绘制了两种结构的光学模式,这些结构的总板厚度相同,但InP和InGaAsP的相对厚度不同。在图4b中,对于给定的结构,模式位于有源区正下方的中心位置。在图4c中,我们保持了板层的总厚度,但我们增加了InGaAsP层的厚度,并减少了InP层的厚度。这导致了平均板层折射率的增加,因为InGaAsP的指数高于InP。我们可以注意到,本征模已经移动到底部,现在位于板的中间,因为它被较高的板层折射率所吸引。

添加图片注释,不超过 140 字(可选)

图 4. (a)“稀释”板层的原理。(b)(c)2种外延结构的光学本征模态,板厚相同,但InP/InGaAsP厚度不同。

C.弯曲仿真

MOPA架构中弯曲部分(调制部分)位于在直DFB激光器和倾斜SOA之间。调制器曲率半径由截面的长度和喇叭形 SOA的倾斜度确定( 7°)。由于与弯曲的输入相比,弯曲的输出是倾斜的,因此很难直接仿真弯曲。一种方法是仿真 S 形弯曲:在这种情况下,输入和输出之间没有倾斜。我们使用 Beamprop 软件仿真了在不同长度下由 S 弯曲引起的传播损耗。结果总结在表2和图5中。发射模式是直线截面的本征模态。对于每种配置,左侧的仿真表示光学模式在 XZ 平面中的传播(Y 位置是有源区)。右边的曲线是传播模式和本征模态之间的重叠。

图5a是1 mm长的直线截面中本征模态传播的仿真图。传播没有任何传播损失,这意味着我们的本征模态计算是正确的。图 5b-d 是不同长度(1.0、1.4 和 2.0 mm)的 S 形弯的曲线图。对于 1mm 长的S形弯管,损耗4.56dB,在图 5b 中可以看到弯曲部分的光功率泄漏。对于 2 mm 长的 S 形弯曲,光学损耗低于1dB,如图 5d。在我们设计的曲 MOPA 架构中,我们只有半个 S 形弯曲,使用1mm长的弯曲调制器时,传播损耗应约为0.5dB。

添加图片注释,不超过 140 字(可选)

图 5.在不同波导上的传播的光学模式(a)直,(b)1 mm 长S 弯,(c)1.4 mm 长S 弯,(d) 2 mm 长S 弯。

表2.各种 S 弯曲长度的传播、传输和损耗。

添加图片注释,不超过 140 字(可选)

--未完待续--

[1] S. O’Brien, R. Lang, R. Parke, J. Major, D. F. Welch, and D. Mehuys, “2.2-W Continuous-Wave Diffraction-Limited Monothically Integrated Master Oscillator Power Amplifier at 854 nm,” IEEE Photon. Technol. Lett., vol. 9, no. 9, pp. 440-442, Apr., 1997.

[2] S. O’Brien, A. Schoenfelder, and R. J. Lang, “5-W CW Diffraction-Limited InGaAs Broad-Area Flared Amplifier at 970 nm,” IEEE Photon. Technol. Lett., vol. 9, no. 9, pp. 1217-1219, Sep., 1997.

[3] S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz,” Opt. Express., vol. 19, no. 8, pp. 7077–7083, Apr. 2011.

[4] M. L. Osowski, Y. Gewirtz, R. M. Lammert, S. W. Oh, C. Panja, V. C. Elarde, L. Vaissié, F. D. Patel, and J. E. Ungar, “High-power semiconductor lasers at eye-safe wavelengths,” in proc. SPIE 7325, Laser Technology for Defense and Security V, paper 73250V, May, 2009.

[5] I. Esquivias, A. Pérez-Serrano, J. M. G. Tijero, M. Faugeron, F. van Dijk, M. Krakowski, G. Kochem, M. Traub, J. Barbero, P. Adamiec, X. Ai, J. Rarity, M. Quatrevalet, and G. Ehret, “Random-modulation CW lidar system for space-borne carbon dioxide remote sensing based on a high-Brightness semiconductor Laser,” in proc. ICSO 2014, International Conference on Space Optics, paper 66861, October, 2014.

[6] M. Faugeron, M. Tran, O. Parillaud, M. Chtioui, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. Van Dijk, “High-Power Tunable Dilute Mode DFB Laser With Low RIN and Narrow Linewidth,” IEEE Photon. Technol. Lett., vol. 25, no. 1, pp. 7-10, Jan, 2013.

[7] P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-Power, Low-Noise 1.5-µm Slab-Coupled Optical Waveguide (SCOW) Emitters: Physics, Devices, and Applications,” IEEE J. Sel Top. Quantum Electron., vol. 17, no. 6, pp. 1698–1714, Nov/Dec. 2011.

[8] M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow, and H. Wenzel, “Measurement and Simulation of Distributed-Feedback Tapered Master-Oscillator Power Amplifiers,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 609-616, June, 2009.

[9] P. A. Yazaki, K. Komori, G. Bendelli, S. Arai, and Y. Suematsu, “A GaInAsP/InP Tapered-Waveguide Semiconductor Laser Amplifier Integrated with a 1.5 µm Distributed Feedback Laser,” IEEE Photon. Technol. Lett., vol. 3, no. 12, pp. 1060-1063, Dec., 1991.

[10] L. Hou, M. Haji, J. Akbar, and J. H. Marsh, “Narrow linewidth laterally coupled 1.55 µm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier,” Opt. Lett., vol. 37, no. 21, pp. 4525-4527, Nov., 2012.

[11] M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. Van Dijk, “High Peak Power, Narrow RF Linewidth Asymmetrical Cladding Quantum-Dash Mode-Locked Lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, pp. 1101008, July–Aug, 2013.

注:本文由天津见合八方光电科技有限公司挑选并翻译,旨在推广和分享相关SOA半导体光放大器基础知识,助力SOA技术的发展和应用。特此告知,本文系经过人工翻译而成,虽本公司尽最大努力保证翻译准确性,但不排除存在误差、遗漏或语义解读导致的不完全准确性,建议读者阅读原文或对照阅读,也欢迎指出错误,共同进步。

相关文章:

用于LiDAR测量的1.58um单芯片MOPA(一)

--翻译自M. Faugeron、M. Krakowski1等人2014年的文章 1.简介 如今,人们对高功率半导体器件的兴趣日益浓厚,这些器件主要用于遥测、激光雷达系统或自由空间通信等应用。与固态激光器相比,半导体器件更紧凑且功耗更低,这在低功率供…...

【GPT】代谢概念解读

以下是对代谢中分解代谢和合成代谢两个概念的深入解读,用简单易懂的方式展开说明: 1. 分解代谢(Catabolism) 什么是分解代谢? 分解代谢是身体把大分子“拆开”的过程。就像把一个三明治分解成面包片、肉片和菜叶&#…...

Devops-git篇-01-git环境配置

环境配置 设置用户签名 配置用户名: git config --global user.name 你的用户名 配置邮箱: git config --global user.email 注册的邮箱 配置好之后,可以用git config --global --list命令查看配置是否OK $ git config --global --list u…...

STM32 HAL库开发学习1.STM32CubeMX 新建工程

STM32 HAL库开发学习1.STM32CubeMX 新建工程 一、 STM32 CubeMX 下载二、CubeMX 功能介绍1. 固件包路径设置2. 新建工程 三、创建项目实例1. 新建项目2. GPIO 管脚设置3. GPIO 窗口配置4. 调试设置5. 时钟配置6. 项目管理(1)项目信息(2&#…...

JS学习(2)(浏览器执行JS过程、JS的ECMAScript、DOM、BOM)

目录 一、浏览器如何执行JS? (1)浏览器主要的组成部分。 1、渲染引擎。 2、JS引擎。 (2)演示。 二、JS的组成。 (1)JS主要由三部分组成。 1、JS基础。 2、JS-API。 (2)EC…...

如何解决服务器扫描出的ASP木马问题

随着互联网的发展,网站安全问题日益凸显。其中,ASP(Active Server Pages)木马因其隐蔽性和危害性成为攻击者常用的手段之一。本文将详细介绍如何检测和清除服务器上的ASP木马,以保障网站的安全。 1. ASP木马概述 ASP…...

SpringBoot 架构助力夕阳红公寓管理系统可持续发展战略

摘 要 如今社会上各行各业,都在用属于自己专用的软件来进行工作,互联网发展到这个时候,人们已经发现离不开了互联网。互联网的发展,离不开一些新的技术,而新技术的产生往往是为了解决现有问题而产生的。针对于夕阳红公…...

TCP、HTTP、RPC

一、TCP (Transmission Control Protocol) 定义 TCP(传输控制协议)是一种面向连接、可靠传输的传输层协议,用于在计算机网络中提供端到端的数据通信服务。它是互联网协议套件的一部分,与IP(互联网协议)一…...

《C++ 中 RNN 及其变体梯度问题的深度剖析与解决之道》

在当今人工智能蓬勃发展的浪潮中,递归神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU)在处理序列数据方面展现出了强大的潜力。然而,当我们在 C中着手实现这些网络时…...

TypeScript 在 React 中的应用

文章目录 前言一、为什么要在 React 中使用 TypeScript?二、如何在React中使用 TypeScript三、高级类型结语 前言 随着前端开发的复杂度不断提升,开发者对于代码质量、可维护性和开发效率的要求也日益增高。TypeScript 作为一种为 JavaScript 添加静态类…...

黑马2024AI+JavaWeb开发入门Day07-部门管理-日志技术飞书作业

视频地址:哔哩哔哩 讲义作业飞书地址:day07作业 完成新增班级和查询班级的接口开发 1、ClazzController.java package org.example.controller;import lombok.extern.slf4j.Slf4j; import org.example.pojo.Clazz; import org.example.service.Clazz…...

UIlicious - 自动化端到端测试

在现代软件开发中,测试自动化已然成为产品交付质量的基石。而端到端测试(E2E),作为验证整个应用流畅运行的关键,常常是测试工作中最具挑战性的一环。这时,一款简单高效的自动化测试工具——UIlicious&#…...

JMeter中获取随机数、唯一ID、时间日期(包括当前日期增减)截取指定位数的字符等

在JMeter中,您可以使用内置的函数和一些额外的插件来获取随机数、唯一ID、时间日期以及截取指定位数的字符。以下是一些常用的方法: 获取随机数: 使用__Random函数,您可以在指定的最小值和最大值之间生成一个随机数。例如&#xf…...

构建自己的docker的ftp镜像

aarch64系统可运行的docker镜像 构建自己的vsftpd镜像,我是在windows系统下的docker desktop中构建运行于aarch64 GNU/Linux系统的ftp镜像。 系统环境: Welcome to Debian GNU/Linux with Linux x.x.x dockerfile FROM ubuntu:latestUSER rootRUN ap…...

人机交互革命,为智能座舱市场激战注入一针「催化剂」

从AIGC到AGI赋能,智能座舱人机交互体验迎来新范式。 不断训练、迭代的大模型,为智能座舱带来了更全面的感知能力、更准确的认知理解,以及更丰富的交互模态,显著提升了其智能化水平。 “AI大模型的快速应用与迭代,推动…...

数据结构复习记录

基本概念 线性表 线性表是最简单也最常用的一种数据结构,是由n( n ≥ 0 n\geq0 n≥0)个类型相同的数据元素组成的有限序列,是一种逻辑结构,有两种表示方式(即存储结构):顺序表示和链式表示。 栈和队列 栈…...

Qt自定义checkbox实现按下回车键该项打勾

引言 开发环境代码结构示例代码运行效果总结使用qt实现一个列表,列表中每一项中的类似一个checkbox,通过上下键可以切换选中项,按下回车键在已经选中的项前出现对勾。效果如下: 20241203_163929 开发环境 使用ubuntu下QtCreator4.11.。 代码结构 这里将项目的结构截图贴…...

头歌作业 数据库与大数据管理 期末复习资料

1、 下列说法错误的是?c A、UserCF算法推荐的是那些和目标用户有共同兴趣爱好的其他用户所喜欢的物品 B、ItemCF算法推荐的是那些和目标用户之前喜欢的物品类似的其他物品 C、UserCF算法的推荐更偏向个性化 D、UserCF随着用户数目的增大,用户相似度…...

2023年华数杯数学建模A题隔热材料的结构优化控制研究解题全过程文档及程序

2023年华数杯全国大学生数学建模 A题 隔热材料的结构优化控制研究 原题再现: 新型隔热材料 A 具有优良的隔热特性,在航天、军工、石化、建筑、交通等高科技领域中有着广泛的应用。   目前,由单根隔热材料 A 纤维编织成的织物,…...

如何抓取亚马逊页面动态加载的内容:Python爬虫实践指南

引言 在现代电商领域,数据的重要性不言而喻。亚马逊作为全球领先的电商平台,其页面上动态加载的内容包含了丰富的商品信息。然而,传统的爬虫技术往往难以应对JavaScript动态加载的内容。本文将详细介绍如何使用Python结合Selenium工具来抓取…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

蓝桥杯 冶炼金属

原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...