当前位置: 首页 > news >正文

C语言:指针与数组

一、. 数组名的理解

int arr[5] = { 0,1,2,3,4 };
int* p = &arr[0];

在之前我们知道要取一个数组的首元素地址就可以使用&arr[0],但其实数组名本身就是地址,而且是数组首元素的地址。在下图中我们就通过测试看出,结果确实如此。

可是我们再来看下图的结果,我们发现当我们对数组名使用sizeof函数是会发现不同之处,如果数组名就是地址,那么再x64环境下应该就是八个字节,但是却输出了20,这是为什么呢?

其实数组名就是数组首元素(第⼀个元素)的地址是对的,但是有两个例外:
1. sizeof(数组名),sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小, 单位是字节。
2. &数组名,这里的数组名表示整个数组,取出的是整个数组的地址(整个数组的地址和数组首元素 的地址是有区别的)。
可以当我们试着打印这俩个地址时,看出来结果似乎是相同的。那到底是有什么区别呢,我们再想想看指针变量类型不同的区别,是否有些思路了呢。
这里我们发现arr和arr+1相差4个字节,所以&arr[0]和&arr[0]+1相差4个字节,是因为&arr [0]和 arr 都是首元素的地址,+1就是跳过⼀个元素。但是&arr 和 &arr+1相差20个字节。
因为&arr是数组的地址,+1 操作是跳过整个数组的。到这里大家应该搞清楚数组名的意义了吧。
二、使用指针访问数组
#include <stdio.h>
int main()
{int arr[5] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);for (int i = 0; i < sz; i++){scanf("%d", arr + i);}for (int i = 0; i < sz; i++){printf("%d ", *(arr + i));}return 0;
}

在scanf()中arr是arr数组首元素的地址。因为数组元素的地址是递增的,所以随着这个地址的增加,出现的地址就变成了数组中其他元素的地址了,也就是arr+i相当于&arr[i]。在打印输出时,也是相同的原理,依次取出每个元素的地址并解引用即可,也就是*(arr+i)相当于arr[i]。

三、一维数组传参的本质

#include <stdio.h>
void test(int arr[5])
{int sz1 = sizeof(arr) / sizeof(arr[0]);printf("%d ", sz1);
}
int main()
{int arr[5] = { 0 };int sz2 = sizeof(arr) / sizeof(arr[0]);test(arr);printf("%d ", sz2);return 0;
}

当我们把数组传给函数去实现求其中的元素数时,我们会发现得到的结果并不是我们想要的结果。这是为什么呢?我们接下来分析一下这段代码并想一想一维数组传参的本质。在一维数组传参中我们传的其实是这个数组的首元素的地址,所以在test()中得到的是arr这个数组中第一个元素的地址,在x64环境下它就占八个字节。而在它后面的arr[0]就像前面说的一样,相当于*arr,也就是arr数组的首元素的值,因为它的类型是int,所以占四个字节。所以一维数组传参的本质就是传递的是指针,也就解决不了求元素数的问题。当然在传参时我们也可以写成指针的形式。

#include <stdio.h>
void test(int* arr)
{int sz1 = sizeof(arr) / sizeof(arr[0]);printf("sz1=%d ", sz1);
}
int main()
{int arr[5] = { 0 };int sz2 = sizeof(arr) / sizeof(arr[0]);test(arr);printf("sz2=%d ", sz2);return 0;
}

四、冒泡排序

其实冒泡排序的核心就是两两相邻元素比较。如果我们要将一个数组中的数从小到大排列就可以使用冒泡排序。

#include <stdio.h>
void bubble_sort(int* arr,int sz)
{int temp;for (int j = 1; j < sz; j++){for (int i = 1; i <= sz - j; i++){if (*(arr + i - 1) > *(arr + i)){temp = *(arr + i - 1);*(arr + i - 1) = *(arr + i);*(arr + i) = temp;}}}
}
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);for (int i = 0; i < sz; i++){scanf("%d",&arr[i]);}bubble_sort(arr,sz);for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}return 0;
}

当然如果该数列的元素如果本来就是正序排列的,那么这样做就会很浪费效率,我们可以对程序再进行优化一下。

#include <stdio.h>
void bubble_sort(int* arr,int sz)
{int temp;for (int j = 1; j < sz; j++){int flag = 1;for (int i = 1; i <= sz - j; i++){if (*(arr + i - 1) > *(arr + i)){flag = 0;temp = *(arr + i - 1);*(arr + i - 1) = *(arr + i);*(arr + i) = temp;}}if (flag)break;}
}
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);for (int i = 0; i < sz; i++){scanf("%d",&arr[i]);}bubble_sort(arr,sz);for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}return 0;
}

在程序中加入了flag变量,如果在第一次排序中没有改变排序,也就是这个数组的数本来就为正序,就会跳出这个循环。

五、二级指针

我们知道指针变量也是变量,那么它也应该有地址,什么能储存它呢,就是二级指针。

如图所示,pa是a的指针变量,我们对pa进行取地址,也就是我们刚才说的二级指针。

*ppa 通过对ppa中的地址进行解引用,这样找到的是 pa *ppa 其实访问的就是 pa 。
**ppa 先通过 *ppa 找到 pa ,然后对 pa 进行解引用操作: *pa ,那找到的是 a 。
六、指针数组

 从名字中我们就能看出这是存放指针的数组。指针数组的每个元素都是用来存放地址(指针)的。

接下来,我们用指针数组模拟二维数组。

#include <stdio.h>
int main()
{int arr1[4] = { 1,2,3,4 };int arr2[4] = { 2,3,4,5 };int arr3[4] = { 3,4,5,6 };int* arr[3] = {arr1,arr2,arr3};for (int i = 0; i < 3; i++){for (int j = 0; j < 4; j++){printf("%d ", arr[i][j]);}printf("\n");}return 0;
}

我们能看出来打印出的样子和二维数组一模一样。这是怎么实现呢?arr指针数组中存放的是数组名,也就是每行首元素的地址。我们打印时使用的arr[i][j]其实是通过arr[i],也就是arr+i找到是哪个小数组;再通过arr[i][j],就是*(arr[n]+j),也就是*(*(arr+i)+j)就能找出该行的每个数了。上述的代码模拟出二维数组的效果,实际上并非完全是二维数组,因为每一行并非是连续的。

相关文章:

C语言:指针与数组

一、. 数组名的理解 int arr[5] { 0,1,2,3,4 }; int* p &arr[0]; 在之前我们知道要取一个数组的首元素地址就可以使用&arr[0]&#xff0c;但其实数组名本身就是地址&#xff0c;而且是数组首元素的地址。在下图中我们就通过测试看出&#xff0c;结果确实如此。 可是…...

win11无法检测到其他显示器-NVIDIA

https://www.nvidia.cn/software/nvidia-app/ https://cn.download.nvidia.cn/nvapp/client/11.0.1.163/NVIDIA_app_v11.0.1.163.exe 下载安装后&#xff0c;检测驱动、更新驱动。...

SQLite:DDL(数据定义语言)的基本用法

SQLite&#xff1a;DDL&#xff08;数据定义语言&#xff09;的基本用法 1 主要内容说明2 相关内容说明2.1 创建表格&#xff08;create table&#xff09;2.1.1 SQLite常见的数据类型2.1.1.1 integer&#xff08;整型&#xff09;2.1.1.2 text&#xff08;文本型&#xff09;2…...

AI工具集:一站式1000+人工智能工具导航站

在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;技术的飞速发展催生了众多实用的AI工具&#xff0c;但面对如此多的选择&#xff0c;想要找到适合自己的高质量AI工具却并非易事。网络搜索往往充斥着推广内容&#xff0c;真正有价值的信息被淹没其中。为了解决…...

视觉处理基础2

目录 1.池化层 1.1 概述 1.2 池化层计算 1.3 步长Stride 1.4 边缘填充Padding 1.5 多通道池化计算 1.6 池化层的作用 2. 卷积拓展 2.1 二维卷积 2.1.1 单通道版本 2.1.2 多通道版本 2.2 三维卷积 2.3 反卷积 2.4 空洞卷积&#xff08;膨胀卷积&#xff09; 2.5 …...

代码随想录第十四天|二叉树part02--226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度

资料引用&#xff1a; 226.翻转二叉树&#xff08;226.翻转二叉树&#xff09; 101.对称二叉树&#xff08;101.对称二叉树&#xff09; 104.二叉树的最大深度&#xff08;104.二叉树的最大深度&#xff09; 111.二叉树的最小深度&#xff08;111.二叉树的最小深度&#xff09;…...

vue基础之7:天气案例、监视属性、深度监视、监视属性(简写)

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…...

JS实现高效导航——A*寻路算法+导航图简化法

一、如何实现两点间路径导航 导航实现的通用步骤&#xff0c;一般是&#xff1a; 1、网格划分 将地图划分为网格&#xff0c;即例如地图是一张图片&#xff0c;其像素为1000*1000&#xff0c;那我们将此图片划分为各个10*10的网格&#xff0c;从而提高寻路算法的计算量。 2、标…...

Spring Authorization Server登出说明与实践

本章内容概览 Spring Security提供的/logout登出接口做了什么与如何自定义。Spring Authorization Server提供的/connect/logout登出接口做了什么与如何自定义。Spring Authorization Server提供的/oauth2/revoke撤销token接口做了什么与如何自定义。 前言 既然系统中有登录功…...

浏览器报错 | 代理服务器可能有问题,或地址不正确

1 问题描述 Windows连网情况下&#xff0c;浏览器访问地址显示“你尚未连接&#xff0c;代理服务器可能有问题&#xff0c;或地址不正确。”出现如下画面&#xff1a; 2 解决方法 途径1 控制面板-->网络与internet-->internet选项-->Internet属性-->连接-->…...

泷羽sec:shell编程(9)不同脚本的互相调用和重定向操作

声明&#xff1a; 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&#…...

Milvus×OPPO:如何构建更懂你的大模型助手

01. 背景 AI业务快速增长下传统关系型数据库无法满足需求。 2024年恰逢OPPO品牌20周年&#xff0c;OPPO也宣布正式进入AI手机的时代。超千万用户开始通过例如通话摘要、新小布助手、小布照相馆等搭载在OPPO手机上的应用体验AI能力。 与传统的应用不同的是&#xff0c;在AI驱动的…...

单片机几大时钟源

在单片机中&#xff0c;MSI、HSI和HSE通常指的是用于内部晶振配置的不同功能模块&#xff1a; MSI (Master Oscillator System Interface)&#xff1a;这是最低级的一种时钟源管理单元&#xff0c;它控制着最基本的系统时钟&#xff08;SYSCLK&#xff09;&#xff0c;一般由外…...

reverse学习总结(12)

一.[FlareOn4]IgniteMe1 https://files.buuoj.cn/files/02b39b8efca02367af23aa279c81cbec/attachment.zip 根据汇编语言分析 查看需要返回为1的函数 int sub_401050() {int v1; // [esp0h] [ebp-Ch]int i; // [esp4h] [ebp-8h]unsigned int j; // [esp4h] [ebp-8h]char v4; …...

基于“微店 Park”模式下 2+1 链动模式商城小程序的创新发展与应用研究

摘要&#xff1a;本文以“微店 Park”从“开店工具”向“众创平台”的转型为背景&#xff0c;深入探讨 21 链动模式商城小程序在该平台情境下的应用潜力与创新发展路径。通过剖析“微店 Park”的运营模式&#xff0c;包括灵活承租、低成本入驻、多元流量引流等特点&#xff0c;…...

C++11:【列表初始化】【右值引用和移动语义】

目录 一.列表初始化 1.1 C98传统的{} 1.2C11中的{} 1.3C中的std::initializer_list 二.右值引用和移动语义 2.1左值和右值 2.2左值引用和右值引用 2.3引用延长生命周期 2.4左值和右值的参数匹配 2.5右值引用和移动语义的使用场景 2.5.1左值引用主要使用场景 2.5.2移…...

Zookeeper的通知机制是什么?

大家好&#xff0c;我是锋哥。今天分享关于【Zookeeper的通知机制是什么?】面试题。希望对大家有帮助&#xff1b; Zookeeper的通知机制是什么? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Zookeeper的通知机制主要通过Watcher实现&#xff0c;它是Zookeeper客…...

嵌入式蓝桥杯学习1 电量LED

cubemx配置 1.新建一个STM32G431RBT6文件 2.在System-Core中点击SYS&#xff0c;找到Debug&#xff08;设置为Serial Wire&#xff09; 3.在System-Core中点击RCC&#xff0c;找到High Speed Clock(设置为Crystal/Ceramic Resonator) 4.打开Clock Configuration &#xff0…...

bsmap输出结果解释

关于, , -, --的解释 对应着参考基因组的正链&#xff08;有义链&#xff0c;非模板链&#xff0c;即hg38的序列&#xff0c;watson链&#xff09;&#xff1b; -代表正链的互补链&#xff08;正常情况下正链的互补链是负链&#xff0c;但在重硫酸盐处理后正链和负链并不互补…...

【java-数据结构篇】揭秘 Java LinkedList:链表数据结构的 Java 实现原理与核心概念

我的个人主页 我的专栏&#xff1a;Java-数据结构&#xff0c;希望能帮助到大家&#xff01;&#xff01;&#xff01;点赞❤ 收藏❤ 目录 1. Java LinkedList 基础 1.1 LinkedList 简介 1.2 LinkedList 的实现原理 1.3 LinkedList 与 ArrayList 的区别 2. 链表基础 2.1 链…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...