当前位置: 首页 > news >正文

365天深度学习训练营-第P6周:VGG-16算法-Pytorch实现人脸识别

  • 🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

文为「365天深度学习训练营」内部文章
参考本文所写记录性文章,请在文章开头带上「👉声明」

🍺要求:

  1. 保存训练过程中的最佳模型权重 已【达成√】
  2. 调用官方的VGG-16网络框架【达成√】

🍻拔高(可选):

  1. 测试集准确率达到60%(难度有点大,但是这个过程可以学到不少)【达成√ 最终准确率为82%】
  2. 手动搭建VGG-16网络框架【达成√】

🏡 我的环境:

  • 语言环境:Python3.11.9
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • torch==2.3.1
      • torchvision==0.18.1
  • 数据集:🔗百度网盘、🔗和鲸(请不要对外公开数据集)

目录

一、 前期准备

1. 设置GPU

2. 导入数据

3. 划分数据集

二、调用官方的VGG-16模型

三、 训练模型

1. 编写训练函数

3. 编写测试函数

3. 设置动态学习率

4. 正式训练

四、 结果可视化

1. Loss与Accuracy图

2. 指定图片进行预测

3. 模型评估

五、优化代码

 

1. 数据预处理部分优化

优化点:

优化效果:

2. 模型结构优化

优化点:

优化效果:

3. 损失函数与优化器优化

优化点:

优化效果:

4. 训练与测试循环优化

优化点:

优化效果:

5. 效果

六、手动搭建VGG-16模型

七、个人学习总结

1. 深度学习项目的系统化流程

2. 迁移学习的威力

3. 模型优化的重要性

4. 自主搭建模型的能力提升

5. 项目调试与性能分析

6. 数据可视化的价值


一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2. 导入数据

import os,PIL,random,pathlibdata_dir = './48-data/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("./48-data/",transform=train_transforms)
total_data


total_data.class_to_idx

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

二、调用官方的VGG-16模型

VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。

以下是VGG-16的主要特点:

  1. 深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。
  2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。
  3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。
  4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

from torchvision.models import vgg16device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型for param in model.parameters():param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3. 设置动态学习率

# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.92 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lrlearn_rate = 1e-4 # 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)
# 调用官方动态学习率接口时使用
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

👉调用官方接口示例:

该代码块仅为代码讲解示例,不是整体程序的一部分

model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)for epoch in range(20):for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()scheduler.step()

更多的官方动态学习率设置方式可参考:torch.optim — PyTorch 2.5 documentation

4. 正式训练

model.train()model.eval()训练营往期文章中有详细的介绍。请注意观察我是如何保存最佳模型,与TensorFlow2的保存方式有何异同。

import copyloss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):# 更新学习率(使用自定义学习率时使用)# adjust_learning_rate(optimizer, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)print('Done')

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测

from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./48-data/Angelina Jolie/001_fe3347c0.jpg', model=model, transform=train_transforms, classes=classes)

3. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss

# 查看是否与我们记录的最高准确率一致
epoch_test_acc

五、优化代码

1. 数据预处理部分优化

优化点
  1. 数据增强不足:
    • 仅使用了 Resize,可能导致模型泛化能力较差。
    • 添加随机翻转、随机裁剪和颜色抖动等增强操作。
  2. 目标类别个数 len(classNames) 未正确设置,需检查类别数。
优化效果

增强数据多样性,减少模型过拟合,提高模型泛化性能。

from torchvision import transforms, datasets# 数据增强
train_transforms = transforms.Compose([transforms.RandomResizedCrop(224),  # 随机裁剪并调整到224x224transforms.RandomHorizontalFlip(),  # 随机水平翻转transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),  # 颜色抖动transforms.ToTensor(),              # 转为Tensortransforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])test_transforms = transforms.Compose([transforms.Resize(256),              # 调整大小transforms.CenterCrop(224),          # 中心裁剪到224x224transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])total_data = datasets.ImageFolder("./48-data/",transform=train_transforms)
total_dataprint(total_data.class_to_idx)train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset# 数据加载器
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=1)

2. 模型结构优化

优化点
  1. VGG16的全连接层过多,可能导致过拟合。
    • 减少全连接层的神经元数量,添加 Dropout 防止过拟合。
  2. 冻结的特征层过多,可能限制了特征学习能力。
    • 解冻后几层卷积层,让模型能够更好适配当前数据集。
优化效果

减轻过拟合风险,提升模型对特定数据集的适应性。

from torchvision.models import vgg16
import torch.nn as nndevice = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")# 加载预训练模型
model = vgg16(pretrained=True)# 解冻最后几层卷积层
for param in list(model.features.parameters())[-8:]:param.requires_grad = True# 修改全连接层
model.classifier = nn.Sequential(nn.Linear(25088, 4096), nn.ReLU(inplace=True),nn.Dropout(p=0.5),nn.Linear(4096, 1024), nn.ReLU(inplace=True),nn.Dropout(p=0.5),nn.Linear(1024, len(classeNames))  # 输出类别数
)model.to(device)
model

3. 损失函数与优化器优化

优化点
  1. 使用 AdamW 替代 SGD,提高优化效率。
  2. 增加权重衰减(Weight Decay)控制模型复杂度。
  3. 调整学习率策略:使用 CosineAnnealingLR
优化效果

更快的收敛速度,更平稳的优化过程,减少过拟合风险。

import torch.optim as optimlearn_rate = 1e-4
optimizer = optim.AdamW(model.parameters(), lr=learn_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
loss_fn = nn.CrossEntropyLoss()

4. 训练与测试循环优化

优化点
  1. 记录每个 epoch 的学习率,便于分析。
  2. 添加梯度裁剪,防止梯度爆炸。
  3. 打印更多信息帮助调试(如每轮训练时间)。
优化效果

更稳定的训练过程,便于调试与分析。

import time
import copyepochs = 40
train_loss, train_acc = [], []
test_loss, test_acc = [], []
best_acc = 0for epoch in range(epochs):start_time = time.time()# 训练模式model.train()size = len(train_dl.dataset)train_correct, train_epoch_loss = 0, 0for X, y in train_dl:X, y = X.to(device), y.to(device)optimizer.zero_grad()pred = model(X)loss = loss_fn(pred, y)loss.backward()# 梯度裁剪torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)optimizer.step()train_correct += (pred.argmax(1) == y).type(torch.float).sum().item()train_epoch_loss += loss.item()# 测试模式model.eval()size = len(test_dl.dataset)test_correct, test_epoch_loss = 0, 0with torch.no_grad():for X, y in test_dl:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_epoch_loss += loss.item()# 学习率更新scheduler.step()# 保存最佳模型test_accuracy = test_correct / sizeif test_accuracy > best_acc:best_acc = test_accuracybest_model = copy.deepcopy(model)train_loss.append(train_epoch_loss / len(train_dl))train_acc.append(train_correct / len(train_dl.dataset))test_loss.append(test_epoch_loss / len(test_dl))test_acc.append(test_accuracy)end_time = time.time()print(f"Epoch {epoch+1:02d}, Train Acc: {train_acc[-1]*100:.2f}%, Test Acc: {test_acc[-1]*100:.2f}%, "f"Train Loss: {train_loss[-1]:.4f}, Test Loss: {test_loss[-1]:.4f}, "f"LR: {scheduler.get_last_lr()[0]:.6f}, Time: {end_time - start_time:.2f}s")# 保存模型
torch.save(best_model.state_dict(), './best_model.pth')
print("Training complete!")

5. 效果

六、手动搭建VGG-16模型

 VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
  • 3个全连接层(Fully connected Layer),用classifier表示;
  • 5个池化层(Pool layer)。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VGG16(nn.Module):def __init__(self, num_classes=1000):super(VGG16, self).__init__()# 定义卷积层和池化层self.features = nn.Sequential(# Block 1nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 112x112# Block 2nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 56x56# Block 3nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 28x28# Block 4nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 14x14# Block 5nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 7x7)# 定义全连接层self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = torch.flatten(x, 1)  # 展平x = self.classifier(x)return x# 测试网络是否能正常运行
if __name__ == "__main__":model = VGG16(num_classes=1000)print(model)# 测试输入input_tensor = torch.randn(1, 3, 224, 224)  # Batch size=1, RGB图像, 224x224output = model(input_tensor)print("输出形状:", output.shape) # torch.Size([1, 1000])

七、个人学习总结

在这个项目中,我完整体验了从数据预处理到模型训练再到结果优化的深度学习项目流程,不仅巩固了理论知识,也提升了实践能力。在完成VGG-16网络的调用与优化过程中,我收获颇丰,并从多个方面得到了深刻的经验和启发,这些经验将极大地应用于后续的深度学习研究和实践。

1. 深度学习项目的系统化流程

本次实践让我认识到,一个完整的深度学习项目离不开前期准备、模型构建、训练调试与后期优化等环节的有机结合。例如,在数据预处理阶段,我学习了如何利用torchvision.transforms进行数据增强,包括随机裁剪、颜色抖动等操作,这些方法有效提升了模型的泛化能力,减少了过拟合现象。未来在处理其他数据集时,这些增强技术能够让我快速应对数据样本不足的问题。

2. 迁移学习的威力

通过调用预训练的VGG-16网络,我深刻理解了迁移学习在小样本数据集上的重要性。冻结部分卷积层参数,仅微调全连接层,大幅降低了训练难度并缩短了训练时间。最终测试集准确率达到82%,这远超我的预期。未来在处理类似图像分类任务时,迁移学习将是我优先选择的策略之一。

3. 模型优化的重要性

本次项目让我认识到,不同的优化策略对模型性能提升有显著影响。通过引入动态学习率调节策略torch.optim.lr_scheduler,模型在训练中保持了更平稳的收敛过程。尤其是在采用CosineAnnealingLR优化器时,我看到了如何通过调节学习率在训练后期避免陷入局部最优。此外,使用AdamW替代传统的SGD优化器,也让我意识到针对不同模型和任务选择适合的优化方法的重要性。

4. 自主搭建模型的能力提升

尽管调用官方VGG-16框架已经完成了项目需求,我仍尝试手动搭建了VGG-16模型,这加深了我对其内部结构的理解。从卷积层到全连接层的逐步构建,使我对参数设置和计算流程有了更直观的认识。举例来说,VGG-16中使用3x3卷积核而非更大的卷积核,这种设计在实际搭建时显得尤为高效,因为它既保留了更细粒度的特征信息,又显著减少了参数量。

5. 项目调试与性能分析

在项目实施过程中,我多次遭遇训练不收敛、准确率波动较大的问题。通过引入梯度裁剪(Gradient Clipping)和记录每轮训练时间,我学会了如何更好地监控训练过程并诊断问题。未来在复杂任务中,这些调试手段可以帮助我快速定位问题所在,从而更高效地改进模型。

6. 数据可视化的价值

通过绘制训练集和测试集的准确率与损失曲线,我更加直观地了解了模型的收敛过程和潜在问题。例如,在早期训练中,测试集准确率上升缓慢,而训练集准确率快速提升,我可以据此判断是否存在过拟合问题。这让我深刻认识到可视化是深度学习项目中不可或缺的一部分。

相关文章:

365天深度学习训练营-第P6周:VGG-16算法-Pytorch实现人脸识别

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 文为「365天深度学习训练营」内部文章 参考本文所写记录性文章,请在文章开头带上「👉声明」 🍺要求: 保存训练过…...

企业AI助理在数据分析与决策中扮演的角色

在当今这个数据驱动的时代,企业每天都需要处理和分析大量的数据,以支持其业务决策。然而,面对如此庞大的数据量,传统的数据分析方法已经显得力不从心。幸运的是,随着人工智能(AI)技术的不断发展…...

洛谷 B2029:大象喝水 ← 圆柱体体积

【题目来源】https://www.luogu.com.cn/problem/B2029【题目描述】 一只大象口渴了,要喝 20 升水才能解渴,但现在只有一个深 h 厘米,底面半径为 r 厘米的小圆桶 (h 和 r 都是整数)。问大象至少要喝多少桶水才会解渴。 …...

go每日一题:mock打桩、defer、recovery、panic的调用顺序

题目一:单元测试中使用—打桩 打桩概念:使用A替换 原函数B,那么A就是打桩函数打桩原理:运行时,通过一个包,将内存中函数的地址替换为桩函数的地址打桩操作:利用Patch()函…...

STM32F103 HSE时钟倍频以及设置频率函数(新手向,本人也是新手)

HSE_SetSysCLK是野火教程里的,不懂的去这 16-RCC(第3节)使用HSE配置系统时钟并使用MCO输出监控系统时钟_哔哩哔哩_bilibili HSE_AutoSetHSE的算法部分是自己写的,用了一个转接数组。C语言不支持bool所以自己定义了一个boolK代替bool。 AutoHSE.h: /**…...

renderExtraFooter 添加本周,本月,本年

在 Ant Design Vue 中,a-date-picker 组件提供了一个 renderExtraFooter 属性,可以用来渲染额外的页脚内容。你可以利用这个属性来添加“本周”、“本月”和“本年”的按钮。下面是如何在 Vue 2 项目中实现这一功能的具体步骤: 1.确保安装了…...

SprinBoot整合KafKa的使用(详解)

前言 1. 高吞吐量(High Throughput) Kafka 设计的一个核心特性是高吞吐量。它能够每秒处理百万级别的消息,适合需要高频次、低延迟消息传递的场景。即使在大规模分布式环境下,它也能保持很高的吞吐量和性能,支持低延…...

【机器学习】CatBoost 模型实践:回归与分类的全流程解析

一. 引言 本篇博客首发于掘金 https://juejin.cn/post/7441027173430018067。 PS:转载自己的文章也算原创吧。 在机器学习领域,CatBoost 是一款强大的梯度提升框架,特别适合处理带有类别特征的数据。本篇博客以脱敏后的保险数据集为例&#x…...

PyTorch 实现动态输入

使用 PyTorch 实现动态输入:支持训练和推理输入维度不一致的 CNN 和 LSTM/GRU 模型 在深度学习中,处理不同大小的输入数据是一个常见的挑战。许多实际应用需要模型能够灵活地处理可变长度的输入。本文将介绍如何使用 PyTorch 实现支持动态输入的 CNN 和…...

【Linux相关】查看conda路径和conda和cudnn版本、安装cudnn、cuDNN无需登录官方下载链接

【Linux相关】 查看conda路径和conda和cudnn版本 安装cudnn cuDNN无需登录官方下载链接 文章目录 1. 查看信息1.1 查看 Conda 路径1.2 查看 Conda 版本1.3 查看 cuDNN 版本1.4 总结 2. 安装cudnn2.1 安装cudnn步骤2.2 cuDNN无需登录官方下载链接 1. 查看信息 查看Conda 路径、C…...

基于Java Springboot环境保护生活App且微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 微信…...

简单的springboot使用sse功能

什么是sse? 1、SSE 是Server-Sent Events(服务器发送事件) 2、SSE是一种允许服务器主动向客户端推送实时更新的技术。 3、它基于HTTP协议,并使用了其长连接特性,在客户端与服务器之间建立一条持久化的连接。 通过这条连接&am…...

【服务器问题】xshell 登录远程服务器卡住( 而 vscode 直接登录不上)

打开 xshell ssh 登录远程服务器:卡在下面这里,迟迟不继续 当 SSH 连接卡在 Connection established. 之后,但没有显示远程终端提示符时,这通常意味着连接已经成功建立,说明不是网络连接和服务器连接问题,…...

AI×5G 市场前瞻及应用现状

本文为《5GAI时代:生活方式和市场的裂变》一书读后总结及研究。 本书的上架建议是“经营”,内容也更偏向于市场分析。书出版于2021年,现在是2024年,可以收集整理一些例子,看看书里的前瞻性5GAI应用预测,到…...

利用 Redis 与 Lua 脚本解决秒杀系统中的高并发与库存超卖问题

1. 前言 1.1 秒杀系统中的库存超卖问题 在电商平台上,秒杀活动是吸引用户参与并提升销量的一种常见方式。秒杀通常会以极低的价格限量出售某些商品,目的是制造紧迫感,吸引大量用户参与。然而,这种活动的特殊性也带来了许多技术挑…...

【MySQL】创建数据库、用户和密码

创建数据库、用户和密码参考sql语句 drop database if exists demoshop; drop user if exists demoshop%; -- 支持emoji:需要mysql数据库参数: character_set_serverutf8mb4 create database demoshop default character set utf8mb4 collate utf8mb4_un…...

leetcode hot100【Leetcode 72.编辑距离】java实现

Leetcode 72.编辑距离 题目描述 给定两个单词 word1 和 word2,返回将 word1 转换为 word2 所使用的最少操作数。 你可以对一个单词执行以下三种操作之一: 插入一个字符删除一个字符替换一个字符 示例 1: 输入: word1 "horse", word2 &…...

腾讯阅文集团Java后端开发面试题及参考答案

Java 的基本数据类型有哪些?Byte 的数值范围是多少? Java 的基本数据类型共有 8 种,可分为 4 类: 整数类型:包括 byte、short、int 和 long。byte 占 1 个字节,其数值范围是 - 128 到 127,用于表示较小范围的整数,节省内存空间,在处理一些底层的字节流数据或对内存要求…...

protobuf实现Hbase数据压缩

目录 前置HBase数据压缩效果获取数据(反序列化) 前置 安装说明 使用说明 HBaseDDL和DML操作 HBase数据压缩 问题 在上文的datain中原文 每次写入数据会写入4个单元格的内容,现在希望能对其进行筛减,合并成1格,减少存储空间(序列…...

论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris

The Tabula Muris Consortium., Overall coordination., Logistical coordination. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). 论文地址:https://doi.org/10.1038/s41586-018-0590-4 代码地址…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...