当前位置: 首页 > news >正文

Rust循环引用与多线程并发

循环引用与自引用

循环引用的概念

循环引用指的是两个或多个对象之间相互持有对方的引用。在 Rust 中,由于所有权和生命周期的严格约束,直接创建循环引用通常会导致编译失败。例如:

// 错误的循环引用示例
struct Node {next: Option<Box<Node>>,
}fn create_cycle() {let n1 = Box::new(Node { next: None });let n2 = Box::new(Node { next: Some(n1) }); // 编译错误n1.next = Some(n2); // 编译错误
}

在这个例子中,尝试创建一个简单的双向链表,但由于所有权转移问题,编译器会报错。

自引用结构体的实现

自引用结构体是指一个结构体内部包含对自身实例的引用。这种结构常用于实现树形数据结构或其他需要递归引用的场景。

use std::rc::{Rc, Weak};struct Node {value: i32,parent: Option<Weak<Rc<Node>>>,children: Vec<Rc<Node>>,
}impl Node {fn new(value: i32) -> Self {Node {value,parent: None,children: Vec::new(),}}fn add_child(&mut self, child: Rc<Node>) {self.children.push(child.clone());child.parent = Some(Rc::downgrade(&self));}
}

使用 Rc 和 Weak 解决循环引用

为了处理循环引用问题,Rust 提供了 Rc 和 Weak 两种类型:

  • Rc<T>: 引用计数类型,允许多个所有者。
  • Weak<T>: 对应于 Rc<T> 的弱引用版本,不会增加引用计数。

通过使用 Weak 可以打破循环引用,因为 Weak 不会增加其指向的对象的引用计数。

生命周期注解的应用

在 Rust 中,生命周期注解可以帮助编译器更好地理解引用之间的关系。特别是在自引用和循环引用的情况下,生命周期注解尤为重要。

// 定义一个带有生命周期注解的函数
fn process_node<'a>(node: &'a Node) {println!("Processing node with value: {}", node.value);// 访问子节点for child in &node.children {process_node(child); // 递归处理子节点}
}// 使用生命周期注解的结构体方法
impl<'a> Node {fn traverse<'b>(&'a self, visitor: &dyn Fn(&'b Node)) {visitor(self);for child in &self.children {child.traverse(visitor);}}
}

实际代码示例与分析

下面是一个完整的示例,展示了如何创建并操作自引用结构体:

use std::rc::{Rc, Weak};struct Node {value: i32,parent: Option<Weak<Rc<Node>>>,children: Vec<Rc<Node>>,
}impl Node {fn new(value: i32) -> Self {Node {value,parent: None,children: Vec::new(),}}fn add_child(&mut self, child: Rc<Node>) {self.children.push(child.clone());child.parent = Some(Rc::downgrade(&self));}
}fn main() {let root = Rc::new(Node::new(0));let child1 = Rc::new(Node::new(1));let child2 = Rc::new(Node::new(2));root.add_child(child1.clone());root.add_child(child2.clone());println!("Root has {} children", root.children.len());// 访问子节点的父节点if let Some(parent) = child1.parent {if let Some(p) = parent.upgrade() {println!("Child 1's parent is {}", p.value);}}// 遍历树结构root.traverse(&|node| println!("Visiting node with value: {}", node.value));
}

定义 Node 结构:

  • value: 节点存储的值。
  • parent: 父节点的弱引用,初始为 None。
  • children: 一个向量,存储子节点的强引用。

创建新节点:

  • new 方法初始化一个新的 Node 实例,此时没有父节点也没有子节点。

添加子节点:

  • add_child 方法接收一个 Rc<Node> 类型的参数作为子节点。
  • 将子节点添加到当前节点的 children 向量中。
  • 更新子节点的 parent 字段,使用 Rc::downgrade 转换为 Weak 引用。

遍历树结构:

  • traverse 方法使用生命周期注解,递归地遍历整个树结构。

多线程并发

并发与并行概述

  • 并发 (Concurrency): 多个任务可以在同一时间间隔内执行,但不一定在同一时刻执行。
  • 并行 (Parallelism): 多个任务在同一时刻执行,通常涉及硬件支持。

在 Rust 中,可以通过多线程实现并发,而并行则依赖于多核处理器的支持。

使用多线程

在 Rust 中,可以使用标准库中的 std::thread 模块来创建和管理线程。

创建线程

use std::thread;
use std::time::Duration;fn spawn_thread() {thread::spawn(|| {for i in 1..10 {println!("Thread spawned: {}", i);thread::sleep(Duration::from_millis(1));}});for i in 1..5 {println!("Main thread: {}", i);thread::sleep(Duration::from_millis(1));}
}fn main() {spawn_thread();
}

线程同步:消息传递

在 Rust 中,消息传递是一种常见的线程间通信方式。常用的工具包括 std::sync::mpsc 模块中的通道 (channel)。

使用通道

use std::sync::mpsc;
use std::thread;fn send_messages() {let (tx, rx) = mpsc::channel();thread::spawn(move || {let val = String::from("Hello from the other side!");tx.send(val).unwrap();});let received = rx.recv().unwrap();println!("Got: {}", received);
}fn main() {send_messages();
}

线程同步:锁

Rust 标准库提供了多种锁机制,如 Mutex、RwLock 和 Arc。

使用 Mutex

use std::sync::Mutex;
use std::thread;fn lock_data() {let counter = Mutex::new(0);let mut handles = vec![];for _ in 0..10 {let counter = Mutex::clone(&counter);let handle = thread::spawn(move || {let mut num = counter.lock().unwrap();*num += 1;});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Counter: {}", *counter.lock().unwrap());
}fn main() {lock_data();
}

使用 RwLock

use std::sync::RwLock;
use std::thread;fn read_write_lock() {let data = RwLock::new(String::from("Hello"));let mut handles = vec![];for _ in 0..10 {let data = RwLock::clone(&data);let handle = thread::spawn(move || {let mut d = data.write().unwrap();*d += "!";});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Data: {}", *data.read().unwrap());
}fn main() {read_write_lock();
}

线程同步:条件变量和信号量

Rust 标准库提供了 Condvar 和 Semaphore 等高级同步原语。

使用 Condvar

use std::sync::{Arc, Condvar, Mutex};
use std::thread;fn condition_variable() {let pair = Arc::new((Mutex::new(false), Condvar::new()));let pair_clone = Arc::clone(&pair);thread::spawn(move || {let (lock, cvar) = &*pair;let mut started = lock.lock().unwrap();*started = true;cvar.notify_one();});let (lock, cvar) = &*pair;let mut started = lock.lock().unwrap();while !*started {started = cvar.wait(started).unwrap();}println!("Condition variable signaled!");
}fn main() {condition_variable();
}

使用 Semaphore

use std::sync::Semaphore;
use std::thread;fn semaphore_example() {let sem = Semaphore::new(3);let mut handles = vec![];for _ in 0..5 {let sem = sem.clone();let handle = thread::spawn(move || {sem.acquire().unwrap();println!("Acquired semaphore");thread::sleep(std::time::Duration::from_secs(1));sem.release();});handles.push(handle);}for handle in handles {handle.join().unwrap();}
}fn main() {semaphore_example();
}

线程同步:原子操作与内存顺序

Rust 标准库提供了 std::sync::atomic 模块,用于原子操作和内存顺序控制。

原子操作

use std::sync::atomic::{AtomicUsize, Ordering};fn atomic_operations() {let counter = AtomicUsize::new(0);let mut handles = vec![];for _ in 0..10 {let counter = counter.clone();let handle = thread::spawn(move || {counter.fetch_add(1, Ordering::Relaxed);});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Counter: {}", counter.load(Ordering::Relaxed));
}fn main() {atomic_operations();
}

内存顺序

use std::sync::atomic::{AtomicUsize, Ordering};fn memory_ordering() {let flag = AtomicUsize::new(0);let data = AtomicUsize::new(0);let mut handles = vec![];let flag_clone = flag.clone();let data_clone = data.clone();let handle1 = thread::spawn(move || {flag_clone.store(1, Ordering::Release);data_clone.store(42, Ordering::Relaxed);});let flag_clone = flag.clone();let data_clone = data.clone();let handle2 = thread::spawn(move || {while flag_clone.load(Ordering::Acquire) == 0 {}assert_eq!(data_clone.load(Ordering::Relaxed), 42);});handles.push(handle1);handles.push(handle2);for handle in handles {handle.join().unwrap();}println!("Memory ordering example completed.");
}fn main() {memory_ordering();
}

基于 Send 和 Sync 的线程安全

在 Rust 中,Send 和 Sync 是两个重要的类型约束,用于确保数据在线程间安全传递。

Send 约束

use std::thread;fn send_constraint() {struct NotSend(u8);impl NotSend {fn new() -> Self {NotSend(0)}}// NotSend 类型不能在线程间传递// let handle = thread::spawn(move || {//     println!("NotSend value: {}", NotSend::new().0);// });// 正确的示例let handle = thread::spawn(|| {println!("Send value: {}", 42);});handle.join().unwrap();
}fn main() {send_constraint();
}

Sync 约束

use std::sync::Arc;
use std::thread;fn sync_constraint() {struct NotSync(u8);impl NotSync {fn new() -> Self {NotSync(0)}}// NotSync 类型不能在线程间共享// let shared = NotSync::new();// let handle = thread::spawn(move || {//     println!("NotSync value: {}", shared.0);// });// 正确的示例let shared = Arc::new(42);let handle = thread::spawn(move || {println!("Sync value: {}", shared);});handle.join().unwrap();
}fn main() {sync_constraint();
}

文章到此结束,更多相关的信息,请,https://t.me/gtokentool
 

相关文章:

Rust循环引用与多线程并发

循环引用与自引用 循环引用的概念 循环引用指的是两个或多个对象之间相互持有对方的引用。在 Rust 中&#xff0c;由于所有权和生命周期的严格约束&#xff0c;直接创建循环引用通常会导致编译失败。例如&#xff1a; // 错误的循环引用示例 struct Node {next: Option<B…...

东方隐侠网安瞭望台第8期

谷歌应用商店贷款应用中的 SpyLoan 恶意软件影响 800 万安卓用户 迈克菲实验室的新研究发现&#xff0c;谷歌应用商店中有十多个恶意安卓应用被下载量总计超过 800 万次&#xff0c;这些应用包含名为 SpyLoan 的恶意软件。安全研究员费尔南多・鲁伊斯上周发布的分析报告称&…...

底部导航栏新增功能按键

场景需求&#xff1a; 在底部导航栏添加power案件&#xff0c;单击息屏&#xff0c;长按 关机 如下实现图 借此需求&#xff0c;需要掌握技能&#xff1a; 底部导航栏如何实现新增、修改、删除底部导航栏流程对底部导航栏部分样式如何修改。 比如放不下、顺序排列、坑点如…...

C++ 之弦上舞:string 类与多样字符串操作的优雅旋律

string 类的重要性及与 C 语言字符串对比 在 C 语言中&#xff0c;字符串是以 \0 结尾的字符集合&#xff0c;操作字符串需借助 C 标准库的 str 系列函数&#xff0c;但这些函数与字符串分离&#xff0c;不符合 OOP 思想&#xff0c;且底层空间管理易出错。而在 C 中&#xff0…...

centos8:Could not resolve host: mirrorlist.centos.org

【1】错误消息&#xff1a; [rootcentos211 redis-7.0.15]# yum update CentOS Stream 8 - AppStream …...

Linux 定时任务 命令解释 定时任务格式详解

目录 时间命令 修改时间和日期 定时任务格式 定时任务执行 查看定时任务进程 重启定时任务 时间命令 #查看时间 [rootlocalhost ~]# date 2021年 07月 23日 星期五 14:38:19 CST --------------------------------------- [rootlocalhost ~]# date %F 2021-07-23 -----…...

aws(学习笔记第十五课) 如何从灾难中恢复(recover)

aws(学习笔记第十五课) 如何从灾难中恢复 学习内容&#xff1a; 使用CloudWatch对服务器进行监视与恢复区域(region)&#xff0c;可用区(available zone)和子网(subnet)使用自动扩展(AutoScalingGroup) 1. 使用CloudWatch对服务器进行监视与恢复 整体架构 这里模拟Jenkins Se…...

github webhooks 实现网站自动更新

本文目录 Github Webhooks 介绍Webhooks 工作原理配置与验证应用云服务器通过 Webhook 自动部署网站实现复制私钥编写 webhook 接口Github 仓库配置 webhook以服务的形式运行 app.py Github Webhooks 介绍 Webhooks是GitHub提供的一种通知方式&#xff0c;当GitHub上发生特定事…...

【C语言】递归的内存占用过程

递归 递归是函数调用自身的一种编程技术。在C语言中&#xff0c;递归的实现会占用内存栈&#xff08;Call Stack&#xff09;&#xff0c;每次递归调用都会在栈上分配一个新的 “栈帧&#xff08;Stack Frame&#xff09;”&#xff0c;用于存储本次调用的函数局部变量、返回地…...

365天深度学习训练营-第P6周:VGG-16算法-Pytorch实现人脸识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 文为「365天深度学习训练营」内部文章 参考本文所写记录性文章&#xff0c;请在文章开头带上「&#x1f449;声明」 &#x1f37a;要求&#xff1a; 保存训练过…...

企业AI助理在数据分析与决策中扮演的角色

在当今这个数据驱动的时代&#xff0c;企业每天都需要处理和分析大量的数据&#xff0c;以支持其业务决策。然而&#xff0c;面对如此庞大的数据量&#xff0c;传统的数据分析方法已经显得力不从心。幸运的是&#xff0c;随着人工智能&#xff08;AI&#xff09;技术的不断发展…...

洛谷 B2029:大象喝水 ← 圆柱体体积

【题目来源】https://www.luogu.com.cn/problem/B2029【题目描述】 一只大象口渴了&#xff0c;要喝 20 升水才能解渴&#xff0c;但现在只有一个深 h 厘米&#xff0c;底面半径为 r 厘米的小圆桶 &#xff08;h 和 r 都是整数&#xff09;。问大象至少要喝多少桶水才会解渴。 …...

go每日一题:mock打桩、defer、recovery、panic的调用顺序

题目一&#xff1a;单元测试中使用—打桩 打桩概念&#xff1a;使用A替换 原函数B&#xff0c;那么A就是打桩函数打桩原理&#xff1a;运行时&#xff0c;通过一个包&#xff0c;将内存中函数的地址替换为桩函数的地址打桩操作&#xff1a;利用Patch&#xff08;&#xff09;函…...

STM32F103 HSE时钟倍频以及设置频率函数(新手向,本人也是新手)

HSE_SetSysCLK是野火教程里的,不懂的去这 16-RCC&#xff08;第3节&#xff09;使用HSE配置系统时钟并使用MCO输出监控系统时钟_哔哩哔哩_bilibili HSE_AutoSetHSE的算法部分是自己写的,用了一个转接数组。C语言不支持bool所以自己定义了一个boolK代替bool。 AutoHSE.h: /**…...

renderExtraFooter 添加本周,本月,本年

在 Ant Design Vue 中&#xff0c;a-date-picker 组件提供了一个 renderExtraFooter 属性&#xff0c;可以用来渲染额外的页脚内容。你可以利用这个属性来添加“本周”、“本月”和“本年”的按钮。下面是如何在 Vue 2 项目中实现这一功能的具体步骤&#xff1a; 1.确保安装了…...

SprinBoot整合KafKa的使用(详解)

前言 1. 高吞吐量&#xff08;High Throughput&#xff09; Kafka 设计的一个核心特性是高吞吐量。它能够每秒处理百万级别的消息&#xff0c;适合需要高频次、低延迟消息传递的场景。即使在大规模分布式环境下&#xff0c;它也能保持很高的吞吐量和性能&#xff0c;支持低延…...

【机器学习】CatBoost 模型实践:回归与分类的全流程解析

一. 引言 本篇博客首发于掘金 https://juejin.cn/post/7441027173430018067。 PS&#xff1a;转载自己的文章也算原创吧。 在机器学习领域&#xff0c;CatBoost 是一款强大的梯度提升框架&#xff0c;特别适合处理带有类别特征的数据。本篇博客以脱敏后的保险数据集为例&#x…...

PyTorch 实现动态输入

使用 PyTorch 实现动态输入&#xff1a;支持训练和推理输入维度不一致的 CNN 和 LSTM/GRU 模型 在深度学习中&#xff0c;处理不同大小的输入数据是一个常见的挑战。许多实际应用需要模型能够灵活地处理可变长度的输入。本文将介绍如何使用 PyTorch 实现支持动态输入的 CNN 和…...

【Linux相关】查看conda路径和conda和cudnn版本、安装cudnn、cuDNN无需登录官方下载链接

【Linux相关】 查看conda路径和conda和cudnn版本 安装cudnn cuDNN无需登录官方下载链接 文章目录 1. 查看信息1.1 查看 Conda 路径1.2 查看 Conda 版本1.3 查看 cuDNN 版本1.4 总结 2. 安装cudnn2.1 安装cudnn步骤2.2 cuDNN无需登录官方下载链接 1. 查看信息 查看Conda 路径、C…...

基于Java Springboot环境保护生活App且微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 微信…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...