遗传算法与深度学习实战(26)——编码卷积神经网络架构
遗传算法与深度学习实战(26)——编码卷积神经网络架构
- 0. 前言
- 1. EvoCNN 原理
- 1.1 工作原理
- 1.2 基因编码
- 2. 编码卷积神经网络架构
- 小结
- 系列链接
0. 前言
我们已经学习了如何构建卷积神经网络 (Convolutional Neural Network, CNN),在本节中,我们将了解如何将 CNN 模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。
1. EvoCNN 原理
进化卷积神经网络 (Evolutionary Convolutional Neural Network, EvoCNN) 是一种结合了进化算法和卷积神经网络的方法。
我们知道进化算法是一类基于生物进化过程中的选择、变异和竞争机制的优化算法。在进化卷积神经网络中,进化算法用来优化卷积神经网络 (Convolutional Neural Network, CNN) 的结构或超参数,以提升其性能和适应特定任务的能力。
1.1 工作原理
EvoCNN 可以利用进化算法来自动设计 CNN 的网络结构,包括卷积层的数量、每层的卷积核大小、池化操作的类型等。自动设计的过程可以帮助避免人工设计网络结构时的主观偏差,并且可以根据具体任务调整网络结构。
除了网络结构外,进化算法还可以用于优化 CNN 的超参数,如学习率、批处理大小等,以提升训练效率和模型性能。
EvoCNN 的另一个优点是其适应性强,能够适应不同的任务和数据集。通过进化算法,网络可以在训练过程中动态调整,以适应变化的输入数据和任务要求。
1.2 基因编码
EvoCNN 是演化 CNN 模型架构的模型,其定义了一种将卷积网络编码为可变长度基因序列的过程,如下图所示。

2. 编码卷积神经网络架构
(1) 首先,导入所需库,并加载数据集:
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import numpy as np
import math
import time
import randomimport matplotlib.pyplot as plt
from livelossplot import PlotLossesKerasdataset = datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = dataset.load_data()# normalize and reshape data
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1).astype("float32") / 255.0x_train = x_train[:1000]
y_train= y_train[:1000]
x_test = x_test[:100]
y_test= y_test[:100]class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']def plot_data(num_images, images, labels):grid = math.ceil(math.sqrt(num_images))plt.figure(figsize=(grid*2,grid*2))for i in range(num_images):plt.subplot(grid,grid,i+1)plt.xticks([])plt.yticks([])plt.grid(False) plt.imshow(images[i].reshape(28,28))plt.xlabel(class_names[labels[i]]) plt.show()plot_data(25, x_train, y_train)
构建基因序列时,我们希望定义一个基本规则,所有模型都以卷积层开始,并以全连接层作为输出层结束。为了简化问题,我们无需编码最后的输出层。
(2) 在每个主要网络层内部,我们还需要定义相应的超参数选项,例如滤波器数量和卷积核大小。为了编码多样化数据,我们需要分离主要网络层和相关超参数。设置常量用于定义网络层类型和长度以封装各种相关的超参数。定义总最大网络层数和各种网络层超参数的范围,之后,定义每种类型的块标识符及其相应的大小(该值表示每个层定义的长度,包括超参数):
max_layers = 5
max_neurons = 128
min_neurons = 16
max_kernel = 5
min_kernel = 2
max_pool = 3
min_pool = 2CONV_LAYER = -1
CONV_LAYER_LEN = 4
POOLING_LAYER = -2
POOLING_LAYER_LEN = 3
BN_LAYER = -3
BN_LAYER_LEN = 1
DENSE_LAYER = -4
DENSE_LAYER_LEN = 2
下图展示了编码层块及其相应超参数的基因序列。需要注意的是,负值 -1、-2、-3 和 -4 表示网络层的开始。然后,根据层类型,进一步定义滤波器数量和卷积核大小等超参数。

(3) 构建个体的基因序列(染色体),create_offspring() 函数是构建序列的基础。此代码循环遍历最大层数次,并检查是否(以 50% 的概率)添加卷积层。如果是,则进一步检查是否(以 50% 的概率)添加批归一化和池化层:
def create_offspring():ind = []for i in range(max_layers):if random.uniform(0,1)<.5:#add convolution layerind.extend(generate_conv_layer())if random.uniform(0,1)<.5:#add batchnormalizationind.extend(generate_bn_layer())if random.uniform(0,1)<.5:#add max pooling layerind.extend(generate_pooling_layer())ind.extend(generate_dense_layer())return ind
(4) 编写用于构建网络层的辅助函数:
def generate_neurons():return random.randint(min_neurons, max_neurons)def generate_kernel():part = []part.append(random.randint(min_kernel, max_kernel))part.append(random.randint(min_kernel, max_kernel))return partdef generate_bn_layer():part = [BN_LAYER] return partdef generate_pooling_layer():part = [POOLING_LAYER] part.append(random.randint(min_pool, max_pool))part.append(random.randint(min_pool, max_pool))return partdef generate_dense_layer():part = [DENSE_LAYER] part.append(generate_neurons()) return partdef generate_conv_layer():part = [CONV_LAYER] part.append(generate_neurons())part.extend(generate_kernel())return part
(5) 调用 create_offspring() 生成基因序列,输出如下所示。可以多次调用该函数,观察创建的基因序列的变化:
individual = create_offspring()
print(individual)
# [-1, 37, 5, 2, -3, -1, 112, 4, 2, -4, 25]
(6) 获取基因序列后,继续构建模型,解析基因序列并创建 Keras 模型。build_model 的输入是单个基因序列,利用基因序列产生 Keras 模型。定义网络层之后,根据网络层类型添加超参数:
def build_model(individual):model = models.Sequential()il = len(individual)i = 0while i < il:if individual[i] == CONV_LAYER: n = individual[i+1]k = (individual[i+2], individual[i+3])i += CONV_LAYER_LENif i == 0: #first layer, add input shape model.add(layers.Conv2D(n, k, activation='relu', padding="same", input_shape=(28, 28, 1))) else:model.add(layers.Conv2D(n, k, activation='relu', padding="same")) elif individual[i] == POOLING_LAYER: #add pooling layerk = k = (individual[i+1], individual[i+2])i += POOLING_LAYER_LENmodel.add(layers.MaxPooling2D(k, padding="same")) elif individual[i] == BN_LAYER: #add batch normal layermodel.add(layers.BatchNormalization())i += 1 elif individual[i] == DENSE_LAYER: #add dense layermodel.add(layers.Flatten()) model.add(layers.Dense(individual[i+1], activation='relu'))i += 2model.add(layers.Dense(10))return modelmodel = build_model(individual)
(7) 创建一个新的个体基因序列,根据序列构建一个模型,然后训练模型,输出训练/验证过程中模型性能:
individual = create_offspring()model = build_model(individual) model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test),callbacks=[PlotLossesKeras()],verbose=0)model.summary()
model.evaluate(x_test, y_test)
模型性能的优略取决于随机初始序列,多次运行代码,以观察不同初始随机个体之间的差异。可以通过完成以下问题进一步了解网络架构编码:
- 通过调用循环中的
create_offspring函数,创建一个新的基因编码序列列表,打印并比较不同个体 - 修改最大/最小范围超参数,然后生成一个新的后代列表
- 添加一个新输入到
create_offspring函数,将概率从0.5更改为其他值。然后,生成一个后代列表进行比较
小结
进化卷积神经网络 (Evolutionary Convolutional Neural Network, EvoCNN) 通过结合进化算法的优势,提供了一种自动化设计和优化深度学习模型的方法。在本节中,我们介绍了如何将卷积神经网络架构编码为基因序列,为构建进化卷积神经网络奠定基础。
系列链接
遗传算法与深度学习实战(1)——进化深度学习
遗传算法与深度学习实战(2)——生命模拟及其应用
遗传算法与深度学习实战(3)——生命模拟与进化论
遗传算法与深度学习实战(4)——遗传算法(Genetic Algorithm)详解与实现
遗传算法与深度学习实战(5)——遗传算法中常用遗传算子
遗传算法与深度学习实战(6)——遗传算法框架DEAP
遗传算法与深度学习实战(7)——DEAP框架初体验
遗传算法与深度学习实战(8)——使用遗传算法解决N皇后问题
遗传算法与深度学习实战(9)——使用遗传算法解决旅行商问题
遗传算法与深度学习实战(10)——使用遗传算法重建图像
遗传算法与深度学习实战(11)——遗传编程详解与实现
遗传算法与深度学习实战(12)——粒子群优化详解与实现
遗传算法与深度学习实战(13)——协同进化详解与实现
遗传算法与深度学习实战(14)——进化策略详解与实现
遗传算法与深度学习实战(15)——差分进化详解与实现
遗传算法与深度学习实战(16)——神经网络超参数优化
遗传算法与深度学习实战(17)——使用随机搜索自动超参数优化
遗传算法与深度学习实战(18)——使用网格搜索自动超参数优化
遗传算法与深度学习实战(19)——使用粒子群优化自动超参数优化
遗传算法与深度学习实战(20)——使用进化策略自动超参数优化
遗传算法与深度学习实战(21)——使用差分搜索自动超参数优化
遗传算法与深度学习实战(22)——使用Numpy构建神经网络
遗传算法与深度学习实战(23)——利用遗传算法优化深度学习模型
遗传算法与深度学习实战(24)——在Keras中应用神经进化优化
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
相关文章:
遗传算法与深度学习实战(26)——编码卷积神经网络架构
遗传算法与深度学习实战(26)——编码卷积神经网络架构 0. 前言1. EvoCNN 原理1.1 工作原理1.2 基因编码 2. 编码卷积神经网络架构小结系列链接 0. 前言 我们已经学习了如何构建卷积神经网络 (Convolutional Neural Network, CNN),在本节中&a…...
Linux无线网络配置工具:iwconfig vs iw
在Linux系统中,无线网络配置和管理是网络管理员和开发者的常见任务。本文将详细介绍两个常用的无线网络配置命令行工具:iwconfig 和 iw,并对比它们之间的区别,帮助您更好地选择合适的工具进行无线网络配置。 一、iwconfig 简介 …...
RabbitMQ介绍及安装
文章目录 一. MQ二. RabbitMQ三. RabbitMQ作用四. MQ产品对比五. 安装RabbitMQ1. 安装erlang2. 安装rabbitMQ3. 安装RabbitMQ管理界⾯4. 启动服务5. 访问界面6. 添加管理员用户7. 重新登录 一. MQ MQ( Message queue ), 从字⾯意思上看, 本质是个队列, FIFO 先⼊先出ÿ…...
借助 AI 工具,共享旅游-卡-项目助力年底增收攻略
年底了,大量的商家都在开始筹备搞活动,接下来的双十二、元旦、春节、开门红、寒假,各种活动,目的就是为了拉动新客户。 距离过年还有56 天,如何破局? 1、销售渠道 针对旅游卡项目,主要销售渠道…...
Docker Compose 和 Kubernetes 之间的区别?
一、简介🎀 1.1 Docker Compose Docker Compose 是 Docker 官方的开源项目,负责实现对 Docker 容器集群的快速编排,可以管理多个 Docker 容器组成一个应用。你只需定义一个 YAML 格式的配置文件 docker-compose.yml ,即可创建并…...
node.js常用的模块和中间件?
Node.js常用的模块和中间件包括以下几种: Express:Express是一个灵活的Node.js web应用框架,提供了丰富的API来处理HTTP请求和响应。它支持中间件系统,可以轻松地添加各种功能,如路由、模板引擎、静态文件服务…...
Llama模型分布式训练(微调)
1 常见大模型 1.1 参数量对照表 模型参数量发布时间训练的显存需求VGG-19143.68M2014~5 GB(单 224x224 图像,batch_size32)ResNet-15260.19M2015~7 GB(单 224x224 图像,batch_size32)GPT-2 117M117M2019~…...
Matlab模块From Workspace使用数据类型说明
Matlab原文连接:Load Data Using the From Workspace Block 模型: 从信号来源的数据: timeseries 数据: sampleTime 0.01; numSteps 1001;time sampleTime*[0:(numSteps-1)]; time time;data sin(2*pi/3*time);simin time…...
LangChain学习笔记(一)-LangChain简介
LangChain学习笔记(一)-LangChain简介 langChain是一个人工智能大语言模型的开发框架,主要构成为下图。 一、核心模块 (一)模型I/O模块 负责与现有大模型进行交互,由三部分组成: 提…...
k8s,声明式API对象理解
命令式API 比如: 先kubectl create,再replace的操作,我们称为命令式配置文件操作 kubectl replace的执行过程,是使用新的YAML文件中的API对象,替换原有的API对象;而kubectl apply,则是执行了一…...
KubeBlocks v0.9.2发布啦!支持容器镜像滚动更新、MySQL支持Jemalloc...快来升级体验更多新功能!
KubeBlocks v0.9.2 正式发布啦!本次发布包含了一些新功能、关键的错误修复以及各种改进。以下是详细的更新内容。 升级文档 v0.9.2 升级方式与 v0.9.1 相同,替换版本即可哦~ https://kubeblocks.io/docs/release-0.9/user_docs/upgrade/up…...
Linux-虚拟环境
文章目录 一. 虚拟机二. 虚拟化软件三. VMware WorkStation四. 安装CentOS操作系统五. 在VMware中导入CentOS虚拟机六. 远程连接Linux系统1. Finalshell安装2. 虚拟机网络配置3. 连接到Linux系统 七. 虚拟机快照 一. 虚拟机 借助虚拟化技术,我们可以在系统中&#…...
window系统下的git怎么在黑窗口配置代理
在Windows系统下,通过黑窗口(命令行界面)配置Git代理主要有两种方式:配置HTTP代理和配置SOCKS5代理。以下是具体的步骤: 配置HTTP代理 临时代理设置(仅对当前命令行会话有效): set …...
网络和通信详解
一、Java 网络编程基础 IP 地址和端口号 IP 地址: IP 地址是互联网协议地址,用于标识网络中的设备。在 Java 中,InetAddress类是用于表示 IP 地址的主要类。例如,InetAddress.getByName("www.example.com")可以获取指定…...
网络安全框架及模型-PPDR模型
网络安全框架及模型-PPDR模型 概述: 为了有效应对不断变化的网络安全环境,人们意识到需要一种综合性的方法来管理和保护网络安全。因此,PPDR模型应运而生。它将策略、防护、检测和响应四个要素结合起来,提供了一个全面的框架来处理网络安全问题。 工作原理: PPDR模型的…...
WPF+LibVLC开发播放器-LibVLC播放控制
接上一篇: LibVLC在C#中的使用 实现LibVLC播放器播放控制 界面 界面上添加一个Button按钮用于控制播放 <ButtonGrid.Row"1"Width"88"Height"24"Margin"10,0,0,0"HorizontalAlignment"Left"VerticalAlignme…...
子模块、Fork、NPM 包与脚手架概述
子模块 在 Git 仓库中嵌套另一个仓库,通过引用的方式引入到主项目,版本管理依赖 Git 提交记录或分支,更新需手动拉取并提交,适用于共享代码并保持项目独立性。 优点:子模块支持直接查看和修改,保持子模块…...
基于Java Springboot蛋糕订购小程序
一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 微信…...
【el-table】表格后端排序
在需要排序的列添加属性 sortable,后端排序,需将sortable设置为custom 如果需要自定义轮转添加 sort-orders 属性,数组中的元素需为以下三者之一:ascending 表示升序,descending 表示降序,null 表示还原为原…...
APP聊天项目介绍
项目结构说明 res/layout目录:存放布局相关的 XML 文件,用于定义界面的外观,包含activity_main.xml(主界面布局)和message_item.xml(聊天消息项布局)。 res/drawable目录:存放一些…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
