当前位置: 首页 > news >正文

《地球化学》

《地球化学》主要报道近代地球化学, 特别是其主要分支学科, 如岩石地球化学、元素地球化学、有机地球化学、环境地球化学、矿床地球化学、实验地球化学、生物地球化学、天体化学、计算地球化学、分析地球化学、海洋地球化学、沉积地球化学、纳米地球化学、油气地球化学和同位素地球化学与年代学等方面的创造性、综合性科研成果和研究简报、新书简介、会议简讯、最新地质科技信息研究动态、问题讨论等。
  来稿要求及注意事项如下。
  1. 作者首次注册时应提供尽可能完善的个人信息和第一作者简介(姓名、性别、出生年月、职称、专业和研究方向等)。系统收到来稿后立即自动向作者发出收稿回执。
  2. 编辑部收到来稿后在3个月内向作者反馈稿件评审意见。3个月未接到反馈意见者, 可将该稿改投他刊。但改投后,务请作者告知本刊编辑部。稿件一经录用, 作者不得再将该稿改投他刊。
  3. 依照《著作权法》有关规定, 本刊有权对来稿进行文字修改、删节, 对内容的修改, 应征得作者的同意。
  4. 本刊除印刷版外, 还具有光盘版和网络版等电子版本。稿件一经录用, 所有版本的版权即由作者转让给本刊。稿件刊出后, 本刊将向作者收取发表费, 并一次性付给作者以上版本的稿酬, 并赠送当期本刊1册。
  5. 来稿要求论点明确、数据可靠、文字精炼。来稿请附作者单位的译名、作者姓名的汉语拼音和论文的分类号(依据《中国图书馆分类法》)。文题、关键词、表题和图名均应给出与中文对应的英文内容。
  6. 来稿须提供Microsoft Word文档。字母的大小写、人名、地名全文应统一; 凡是外文姓氏请照写不译; 外文地名请按中国大百科全书出版社出版的《世界地名录》翻译, 《世界地名录》上没有的请照写不译; 图件请同时提供CorelDraw文档(cdr格式)和通用图件文档(tif或jpg格式); 要求提供清晰的、层次分明的图件。
  7. 测试数据要注明测试者、测试方法、条件、精度及误差范围等。同位素地球化学和稀土元素地球化学论文要附原始数据。
  8. 文章标题结构层次一般分为二级或三级, 各级标题用1、2、3……, 1.1、1.2、1.3……表示, 依次类推, 顶格书写。文章题名应恰当、简明、醒目, 一般不宜超过20个字。
  9. 凡引用他人的资料必须在正文和文后列出参考文献, 前后应一一对应。文后所列参考文献应是作者直接阅读过的、最主要的、发表在公开出版物上的文献; 非公开出版物作为脚注处理。引用他人未发表过的资料或协作成果, 应征得有关方面的同意并加以说明。本刊参考文献著录格式从2022年第1期开始采用(著者, 出版年)制。文后参考文献各著录项请按GB/T 7714-2005和CAJ-CD B/T 1-2005的规定依次列出。

相关文章:

《地球化学》

《地球化学》主要报道近代地球化学, 特别是其主要分支学科, 如岩石地球化学、元素地球化学、有机地球化学、环境地球化学、矿床地球化学、实验地球化学、生物地球化学、天体化学、计算地球化学、分析地球化学、海洋地球化学、沉积地球化学、纳米地球化学、油气地球化学和同位素…...

alpine openssl 编译

./config no-shared --prefix/usr/local/openssl apk add musl-dev gcc g apk add linux-headers ssh root 登录 编辑 SSH 配置文件 打开 SSH 配置文件 /etc/ssh/sshd_config: vi /etc/ssh/sshd_config PermitRootLogin yes...

【AI模型对比】AI新宠Kimi与ChatGPT的全面对比:技术、性能、应用全揭秘

文章目录 Moss前沿AI技术背景Kimi人工智能的技术积淀ChatGPT的技术优势 详细对比列表模型研发Kimi大模型的研发历程ChatGPT的发展演进 参数规模与架构Kimi大模型的参数规模解析ChatGPT的参数体系 模型表现与局限性Kimi大模型的表现ChatGPT的表现 结论:如何选择适合自…...

【C#设计模式(17)——迭代器模式(Iterator Pattern)】

前言 迭代器模式可以使用统一的接口来遍历不同类型的集合对象,而不需要关心其内部的具体实现。 代码 //迭代器接口 public interface Iterator {bool HashNext();object Next(); } //集合接口 public interface Collection {Iterator CreateIterator(); } //元素迭…...

二、部署docker

二、安装与部署 2.1 安装环境概述 Docker划分为CE和EE,CE为社区版(免费,支持周期三个月),EE为企业版(强调安全,付费使用)。 Docker CE每月发布一个Edge版本(17.03&…...

FFmpeg 4.3 音视频-多路H265监控录放C++开发十九,ffmpeg封装

封装就是将 一个h264,和一个aac文件重新封装成一个mp4文件。 这里我们的h264 和 aac都是来源于另一个mp4文件,也就是说,我们会将 in.mp4文件解封装成一路videoavstream 和 一路 audioavstream,然后 将这两路的 avstream 合并成一…...

ML 系列:第 39 节 - 估计方法:最大似然估计 (MLE)

目录 一、说明 二、什么是最大似然估计 (MLE)? 2.1 理解公式 2.2 MLE 的定义 2.3 我们何时使用 MLE? 三、结论 一、说明 在统计学领域,我们经常需要根据观察到的数据估计统计模型的参数。为此目的广泛使用的两种关键方法是最大似然估计 ( MLE…...

Linux 权限管理:用户分类、权限解读与常见问题剖析

🌟 快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。🌟 🚩用通俗易懂且不失专业性的文字,讲解计算机领域那些看似枯燥的知识点🚩 目录 💯L…...

网络原理之 UDP 协议

目录 1. UDP 协议报文格式 2. UDP 的特点 (1) 无连接 (2) 不可靠 (3) 面向数据报 (4) 全双工 3. 基于 UDP 的应用层协议 前文是:UDP 的使用 首先了解一下基础知识: 1. UDP 协议报文格式 传输层最重要的协议有两个,一个是 TCP&#x…...

并发框架disruptor实现生产-消费者模式

Disruptor是LMAX公司开源的高性能内存消息队列&#xff0c;单线程处理能力可达600w订单/秒。本文将使用该框架实现生产-消费者模式。一、框架的maven依赖 <!-- https://mvnrepository.com/artifact/com.lmax/disruptor --><dependency><groupId>com.lmax<…...

【Vivado】xdc约束文件编写

随手记录一下项目中学到的约束文件编写技巧。 时序约束 创建生成时钟 参考链接&#xff1a; Vivado Design Suite Tcl Command Reference Guide (UG835) Vivado Design Suite User Guide: Using Constraints (UG903) 通过Clocking Wizard IP创建的时钟&#xff08;MMCM或…...

Redis使用场景-缓存-缓存雪崩

前言 之前在针对实习面试的博文中讲到Redis在实际开发中的生产问题&#xff0c;其中缓存穿透、击穿、雪崩在面试中问的最频繁&#xff0c;本文加了图解&#xff0c;希望帮助你更直观的了解缓存雪崩&#x1f600; &#xff08;放出之前写的针对实习面试的关于Redis生产问题的博…...

概率论相关知识随记

作为基础知识的补充&#xff0c;随学随记&#xff0c;方便以后查阅。 概率论相关知识随记 期望&#xff08;Expectation&#xff09;期望的定义离散型随机变量的期望示例&#xff1a;掷骰子的期望 连续型随机变量的期望示例&#xff1a;均匀分布的期望 期望的性质线性性质期望的…...

【PlantUML系列】序列图(二)

目录 一、参与者 二、消息交互顺序 三、其他技巧 3.1 改变参与者的顺序 3.2 使用 as 重命名参与者 3.3 注释 3.4 页眉和页脚 一、参与者 使用 participant、actor、boundary、control、entity 和 database 等关键字来定义不同类型的参与者。例如&#xff1a; Actor&…...

WPF+MVVM案例实战与特效(三十四)- 日志管理:使用 log4net 实现高效日志记录

文章目录 1、概述2、日志案例实现1、LogHelper 类详解2、代码解释3、配置文件4、实际应用案例场景 1:记录系统运行日志场景 2:记录数据库操作日志场景 3:记录 HTTP 请求日志5、总结1、概述 在WPF软件开发中,良好的日志记录机制对于系统的调试、维护和性能优化至关重要。lo…...

前端测试框架 jasmine 的使用

最近的项目在使用AngulaJs,对JS代码的测试问题就摆在了面前。通过对比我们选择了 Karma jasmine ,使用 Jasmine做单元测试 &#xff0c;Karma 自动化完成&#xff0c;当然了如果使用 Karma jasmine 前提是必须安装 Nodejs。 安装好 Nodejs &#xff0c;使用 npm 安装好必要…...

Qwen2-VL视觉大模型微调实战:LaTex公式OCR识别任务(完整代码)

《SwanLab机器学习实战教程》是一个主打「开箱即用」的AI训练系列教程&#xff0c;我们致力于提供完善的数据集、源代码、实验记录以及环境安装方式&#xff0c;手把手帮助你跑起训练&#xff0c;解决问题。 Qwen2-VL是通义千问团队最近开源的大语言模型&#xff0c;由阿里云通…...

「Mac玩转仓颉内测版42」小学奥数篇5 - 圆和矩形的面积计算

本篇将通过 Python 和 Cangjie 双语解决简单的几何问题&#xff1a;计算圆的面积和矩形的面积。通过这道题&#xff0c;学生将掌握如何使用公式解决几何问题&#xff0c;并学会用编程实现数学公式。 关键词 小学奥数Python Cangjie几何计算 一、题目描述 编写一个程序&#…...

Groom Blender to UE5

Groom Blender to UE5 - Character & Animation - Epic Developer Community Forums Hello, 你好&#xff0c; While exporting my “groom” from blender to UE5, I notice that the curves have a minimal resolution in Unreal. However I would like to get the same …...

开发一套ERP 第十弹 图片作为配置文件,本地读取图片,定时更新图片类型

echo Hello World在同一数据库中在建一个图床数据表,产品一,一对应,图片命名 最优的方案&#xff0c;使用 rust 在构建一个 http server 用于管理非数据库资源,也可以将来对接不同的图床&#xff0c;部署方便 考虑到数据库资源和图片资源,都可以被远程访问这种方法最佳...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...