南京邮电大学《2024年812自动控制原理真题》 (完整版)
本文内容,全部选自自动化考研联盟的:《南京邮电大学812自控考研资料》的真题篇。后续会持续更新更多学校,更多年份的真题,记得关注哦~
目录
2024年真题


Part1:2024年完整版真题
2024年真题


相关文章:
南京邮电大学《2024年812自动控制原理真题》 (完整版)
本文内容,全部选自自动化考研联盟的:《南京邮电大学812自控考研资料》的真题篇。后续会持续更新更多学校,更多年份的真题,记得关注哦~ 目录 2024年真题 Part1:2024年完整版真题 2024年真题...
大数据新视界 -- Hive 数据湖集成与数据治理(下)(26 / 30)
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...
Android EventBus最全面试题及参考答案
目录 什么是 EventBus? 请解释 EventBus 是什么,以及它的工作原理。 简述 EventBus 的工作原理。 EventBus 的主要组成部分有哪些? EventBus 是如何实现发布订阅模式的? EventBus 与观察者模式有什么区别? Even…...
C++ 游戏开发:开启游戏世界的编程之旅(1)
在游戏开发领域,C 一直占据着极为重要的地位。它以高效的性能、对底层硬件的良好控制能力以及丰富的库支持,成为众多大型游戏开发项目的首选编程语言。今天,就让我们一同开启 C 游戏开发的探索之旅。 一、C 游戏开发基础 (一&am…...
SpringBoot mq快速上手
1.依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> 2.示例代码 基础信息配置 package com.example.demo.config;import org.springframework.amqp.co…...
图像处理网络中的模型水印
论文信息:Jie Zhang、Han Fang、Weiming Zhang、Wenbo Zhou、Hao Cui、Hao Cui、Nenghai Yu:Model Watermarking for Image Processing Networks 本文首次提出了图像处理网络中深度水印问题,将知识产权问题引入图像处理模型 提出了第一个深…...
Halcon 瑕疵检测原理及应用
摘要: 本文详细阐述了 Halcon 在瑕疵检测领域的原理、相关技术以及广泛的应用场景。首先介绍了 Halcon 软件的基本概况及其在机器视觉领域的重要地位,接着深入剖析了瑕疵检测所涉及的图像采集、预处理、特征提取与分析以及分类与判定等核心原理ÿ…...
JAVA 架构师面试 100套含答案:JVM+spring+ 分布式 + 并发编程》...
今年的行情,让招聘面试变得雪上加霜。已经有不少大厂,如腾讯、字节跳动的招聘名额明显减少,面试门槛却一再拔高,如果不用心准备,很可能就被面试官怼得哑口无言,甚至失去了难得的机会。 现如今,…...
多模态学习详解
多模态学习详解 引言 多模态(Multimodal)学习是机器学习和人工智能领域的一个重要分支,它涉及从多个不同类型的输入数据中提取信息,并将这些信息融合以改善模型的性能。多模态学习能够处理的数据类型广泛,包括但不限…...
C#应用开发:基于C# WPF界面实现本机网络通讯状态(下载速度)的显示
目录 概述 具体实现 第一步:获取网络接口信息 代码解释: 第二步:创建 WPF 界面 第三步:绑定数据 注意事项 概述 在 WPF 中实现一个界面来显示本机网络接口的状态,通常需要以下几个步骤: 获取网络接口…...
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
概述 论文地址:https://arxiv.org/abs/2405.12213 在机器人学中,通常使用针对特定机器人或任务收集的数据集来学习策略。然而,这种方法需要为每项任务收集大量数据,由此产生的策略只能实现有限的泛化性能。利用其他机器人和任务的…...
2022高等代数下【南昌大学】
设 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 是复数域上线性空间 V V V 的一组基,线性变换 σ \sigma σ 在 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 下的矩阵为 J = ( 2 0 0 1 2…...
UDP编程
UDP编程是指使用用户数据报协议(UDP)进行网络编程的过程。UDP是一种无连接的传输协议,它不保证数据的可靠性和顺序性。 在UDP编程中,程序可以使用套接字(socket)来进行数据的发送和接收。UDP套接字是一种用…...
论文阅读:Omnidirectional Image Super-resolution via Bi-projection Fusion
对于全景图像(ODIs)的超分辨率的技术有:等矩投影(ERP)但是这个没有利用 ODIs 的独特任何特性。ERP提供了完整的视场但引入了显著的失真,而立方体映射投影(CMP)可以减少失真但视场有限…...
Web 毕设篇-适合小白、初级入门练手的 Spring Boot Web 毕业设计项目:智行无忧停车场管理系统(前后端源码 + 数据库 sql 脚本)
🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 项目介绍 1.1 项目功能 2.0 用户登录功能 3.0 首页界面 4.0 车辆信息管理功能 5.0 停车位管理功能 6.0 入场登记管理功能 7.0 预约管理功能 8.0 收费规则功能 9.0…...
微服务的负载均衡可以通过哪些组件实现
微服务的负载均衡可以通过多种组件来实现,以下是一些常见的负载均衡组件及其特点: Nginx: Nginx是一款轻量级的HTTP和反向代理服务器,也是一个高性能的负载均衡器。它支持多种负载均衡算法,如轮询、加权轮询、IP哈希等…...
Spring Boot 支持哪些云环境?
Spring Boot 对云环境的支持非常广泛,它本身是为云原生应用设计的,能够很好地与多种云平台集成。以下是小编给大家列举的一些 Spring Boot 支持的一些主要云环境: Pivotal Cloud Foundry: Pivotal 是 Spring Boot 的创建者&#x…...
第31天:安全开发-JS应用WebPack打包器第三方库JQuery安装使用安全检测
时间轴: 演示案例: 打包器-WebPack-使用&安全 第三方库-JQuery-使用&安全 打包器-WebPack-使用&安全 参考:https://mp.weixin.qq.com/s/J3bpy-SsCnQ1lBov1L98WA Webpack 是一个模块打包器。在 Webpack 中会将前端的所有资源…...
word如何快速创建目录?
文章目录 1,先自己写出目录的各级标题。2、选中目标标题,然后给它们编号3、给标题按照个人需求开始分级4、插入域构建目录。4.1、利用快捷键插入域构建目录4.2、手动插入域构建目录 听懂掌声!学会了吗? 前提声明:我在此…...
关于linux 下的中断
1. /proc/irq/<irq_number>/ 下属性详解 在 Linux 系统中,每个中断号(IRQ)都有一个对应的目录 /proc/irq/<irq_number>/,包含与该中断相关的属性文件。这些文件用于查看和配置中断的具体行为。 以下是 /proc/irq/&l…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...
