南京邮电大学《2024年812自动控制原理真题》 (完整版)
本文内容,全部选自自动化考研联盟的:《南京邮电大学812自控考研资料》的真题篇。后续会持续更新更多学校,更多年份的真题,记得关注哦~
目录
2024年真题


Part1:2024年完整版真题
2024年真题


相关文章:
南京邮电大学《2024年812自动控制原理真题》 (完整版)
本文内容,全部选自自动化考研联盟的:《南京邮电大学812自控考研资料》的真题篇。后续会持续更新更多学校,更多年份的真题,记得关注哦~ 目录 2024年真题 Part1:2024年完整版真题 2024年真题...
大数据新视界 -- Hive 数据湖集成与数据治理(下)(26 / 30)
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...
Android EventBus最全面试题及参考答案
目录 什么是 EventBus? 请解释 EventBus 是什么,以及它的工作原理。 简述 EventBus 的工作原理。 EventBus 的主要组成部分有哪些? EventBus 是如何实现发布订阅模式的? EventBus 与观察者模式有什么区别? Even…...
C++ 游戏开发:开启游戏世界的编程之旅(1)
在游戏开发领域,C 一直占据着极为重要的地位。它以高效的性能、对底层硬件的良好控制能力以及丰富的库支持,成为众多大型游戏开发项目的首选编程语言。今天,就让我们一同开启 C 游戏开发的探索之旅。 一、C 游戏开发基础 (一&am…...
SpringBoot mq快速上手
1.依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> 2.示例代码 基础信息配置 package com.example.demo.config;import org.springframework.amqp.co…...
图像处理网络中的模型水印
论文信息:Jie Zhang、Han Fang、Weiming Zhang、Wenbo Zhou、Hao Cui、Hao Cui、Nenghai Yu:Model Watermarking for Image Processing Networks 本文首次提出了图像处理网络中深度水印问题,将知识产权问题引入图像处理模型 提出了第一个深…...
Halcon 瑕疵检测原理及应用
摘要: 本文详细阐述了 Halcon 在瑕疵检测领域的原理、相关技术以及广泛的应用场景。首先介绍了 Halcon 软件的基本概况及其在机器视觉领域的重要地位,接着深入剖析了瑕疵检测所涉及的图像采集、预处理、特征提取与分析以及分类与判定等核心原理ÿ…...
JAVA 架构师面试 100套含答案:JVM+spring+ 分布式 + 并发编程》...
今年的行情,让招聘面试变得雪上加霜。已经有不少大厂,如腾讯、字节跳动的招聘名额明显减少,面试门槛却一再拔高,如果不用心准备,很可能就被面试官怼得哑口无言,甚至失去了难得的机会。 现如今,…...
多模态学习详解
多模态学习详解 引言 多模态(Multimodal)学习是机器学习和人工智能领域的一个重要分支,它涉及从多个不同类型的输入数据中提取信息,并将这些信息融合以改善模型的性能。多模态学习能够处理的数据类型广泛,包括但不限…...
C#应用开发:基于C# WPF界面实现本机网络通讯状态(下载速度)的显示
目录 概述 具体实现 第一步:获取网络接口信息 代码解释: 第二步:创建 WPF 界面 第三步:绑定数据 注意事项 概述 在 WPF 中实现一个界面来显示本机网络接口的状态,通常需要以下几个步骤: 获取网络接口…...
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
概述 论文地址:https://arxiv.org/abs/2405.12213 在机器人学中,通常使用针对特定机器人或任务收集的数据集来学习策略。然而,这种方法需要为每项任务收集大量数据,由此产生的策略只能实现有限的泛化性能。利用其他机器人和任务的…...
2022高等代数下【南昌大学】
设 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 是复数域上线性空间 V V V 的一组基,线性变换 σ \sigma σ 在 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 下的矩阵为 J = ( 2 0 0 1 2…...
UDP编程
UDP编程是指使用用户数据报协议(UDP)进行网络编程的过程。UDP是一种无连接的传输协议,它不保证数据的可靠性和顺序性。 在UDP编程中,程序可以使用套接字(socket)来进行数据的发送和接收。UDP套接字是一种用…...
论文阅读:Omnidirectional Image Super-resolution via Bi-projection Fusion
对于全景图像(ODIs)的超分辨率的技术有:等矩投影(ERP)但是这个没有利用 ODIs 的独特任何特性。ERP提供了完整的视场但引入了显著的失真,而立方体映射投影(CMP)可以减少失真但视场有限…...
Web 毕设篇-适合小白、初级入门练手的 Spring Boot Web 毕业设计项目:智行无忧停车场管理系统(前后端源码 + 数据库 sql 脚本)
🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 项目介绍 1.1 项目功能 2.0 用户登录功能 3.0 首页界面 4.0 车辆信息管理功能 5.0 停车位管理功能 6.0 入场登记管理功能 7.0 预约管理功能 8.0 收费规则功能 9.0…...
微服务的负载均衡可以通过哪些组件实现
微服务的负载均衡可以通过多种组件来实现,以下是一些常见的负载均衡组件及其特点: Nginx: Nginx是一款轻量级的HTTP和反向代理服务器,也是一个高性能的负载均衡器。它支持多种负载均衡算法,如轮询、加权轮询、IP哈希等…...
Spring Boot 支持哪些云环境?
Spring Boot 对云环境的支持非常广泛,它本身是为云原生应用设计的,能够很好地与多种云平台集成。以下是小编给大家列举的一些 Spring Boot 支持的一些主要云环境: Pivotal Cloud Foundry: Pivotal 是 Spring Boot 的创建者&#x…...
第31天:安全开发-JS应用WebPack打包器第三方库JQuery安装使用安全检测
时间轴: 演示案例: 打包器-WebPack-使用&安全 第三方库-JQuery-使用&安全 打包器-WebPack-使用&安全 参考:https://mp.weixin.qq.com/s/J3bpy-SsCnQ1lBov1L98WA Webpack 是一个模块打包器。在 Webpack 中会将前端的所有资源…...
word如何快速创建目录?
文章目录 1,先自己写出目录的各级标题。2、选中目标标题,然后给它们编号3、给标题按照个人需求开始分级4、插入域构建目录。4.1、利用快捷键插入域构建目录4.2、手动插入域构建目录 听懂掌声!学会了吗? 前提声明:我在此…...
关于linux 下的中断
1. /proc/irq/<irq_number>/ 下属性详解 在 Linux 系统中,每个中断号(IRQ)都有一个对应的目录 /proc/irq/<irq_number>/,包含与该中断相关的属性文件。这些文件用于查看和配置中断的具体行为。 以下是 /proc/irq/&l…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
