当前位置: 首页 > news >正文

2022高等代数下【南昌大学】

  1. ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 是复数域上线性空间 V V V 的一组基,线性变换 σ \sigma σ ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 下的矩阵为

    J = ( 2 0 0 1 2 0 0 0 − 1 ) . J = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}. J= 210020001 .

    1. 写出 J J J 的初等因子组和不变因子组;

    2. 已知 ξ = c 1 ε 1 + c 2 ε 2 \xi = c_1 \varepsilon_1 + c_2 \varepsilon_2 ξ=c1ε1+c2ε2,求 σ ( ξ ) \sigma(\xi) σ(ξ) ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 下的坐标;

    3. 证明 L ( ε 1 , ε 2 ) L(\varepsilon_1, \varepsilon_2) L(ε1,ε2) σ \sigma σ 的不变子空间,且 V = L ( ε 1 , ε 2 ) ⊕ L ( ε 3 ) V = L(\varepsilon_1, \varepsilon_2) \oplus L(\varepsilon_3) V=L(ε1,ε2)L(ε3)

解答 1

J J J 为若尔当形矩阵

J J J 的初等因子为( λ − 2 ) 2 \lambda-2)^2 λ2)2 λ + 1 \lambda+1 λ+1 。不变因子为 d 1 = 1 d_1=1 d1=1 d 2 = 1 d_2=1 d2=1 d 3 = ( λ − 2 ) 2 ( λ + 1 ) d_3=(\lambda-2)^2(\lambda+1) d3=(λ2)2(λ+1)

解答 2
ξ = [ ε 1 ε 2 ε 3 ] [ c 1 c 2 0 ] \xi = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ 0 \end{bmatrix} ξ=[ε1ε2ε3] c1c20

σ ( ξ ) = [ ε 1 ε 2 ε 3 ] [ 2 0 0 1 2 0 0 0 − 1 ] [ c 1 c 2 0 ] = [ ε 1 ε 2 ε 3 ] [ 2 c 1 c 1 + 2 c 2 0 ] . \begin{align} \sigma \left( \xi \right) &= \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \end{bmatrix} \begin{bmatrix} 2c_1 \\ c_1 + 2c_2 \\ 0 \end{bmatrix}. \end{align} σ(ξ)=[ε1ε2ε3] 210020001 c1c20 =[ε1ε2ε3] 2c1c1+2c20 .

σ ( ξ ) \sigma(\xi) σ(ξ) ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 下的坐标为 [ 2 c 1 , c 1 + 2 c 2 , 0 ] T [2c_1,c_1+2c_2,0]^T [2c1,c1+2c2,0]T

解答 3

∀ α ∈ L ( ε 1 , ε 2 ) \forall\alpha\in L(\varepsilon_1, \varepsilon_2) αL(ε1,ε2),即 α = k 1 ε 1 + k 2 ε 2 \alpha=k_1\varepsilon_1+k_2 \varepsilon_2 α=k1ε1+k2ε2

σ ( α ) = σ ( k 1 ε 1 + k 2 ε 2 ) = 2 k 1 ε 1 + ( k 1 + 2 k 2 ) ε 2 \begin{align} \sigma \left( \alpha \right) &= \sigma \left( k_1\varepsilon_1 + k_2\varepsilon_2 \right) \\ &= 2k_1\varepsilon_1 + \left( k_1 + 2k_2 \right)\varepsilon_2 \end{align} σ(α)=σ(k1ε1+k2ε2)=2k1ε1+(k1+2k2)ε2
σ ( α ) ∈ L ( ε 1 , ε 2 ) \sigma \left( \alpha \right)\in L(\varepsilon_1, \varepsilon_2) σ(α)L(ε1,ε2),即 L ( ε 1 , ε 2 ) L(\varepsilon_1, \varepsilon_2) L(ε1,ε2) σ \sigma σ 的不变子空间

ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1,ε2,ε3 V V V 的一组基,则有 V = L ( ε 1 , ε 2 ) + L ( ε 3 ) V = L(\varepsilon_1, \varepsilon_2) + L(\varepsilon_3) V=L(ε1,

相关文章:

2022高等代数下【南昌大学】

设 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1​,ε2​,ε3​ 是复数域上线性空间 V V V 的一组基,线性变换 σ \sigma σ 在 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε1​,ε2​,ε3​ 下的矩阵为 J = ( 2 0 0 1 2…...

UDP编程

UDP编程是指使用用户数据报协议(UDP)进行网络编程的过程。UDP是一种无连接的传输协议,它不保证数据的可靠性和顺序性。 在UDP编程中,程序可以使用套接字(socket)来进行数据的发送和接收。UDP套接字是一种用…...

论文阅读:Omnidirectional Image Super-resolution via Bi-projection Fusion

对于全景图像(ODIs)的超分辨率的技术有:等矩投影(ERP)但是这个没有利用 ODIs 的独特任何特性。ERP提供了完整的视场但引入了显著的失真,而立方体映射投影(CMP)可以减少失真但视场有限…...

Web 毕设篇-适合小白、初级入门练手的 Spring Boot Web 毕业设计项目:智行无忧停车场管理系统(前后端源码 + 数据库 sql 脚本)

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 项目介绍 1.1 项目功能 2.0 用户登录功能 3.0 首页界面 4.0 车辆信息管理功能 5.0 停车位管理功能 6.0 入场登记管理功能 7.0 预约管理功能 8.0 收费规则功能 9.0…...

微服务的负载均衡可以通过哪些组件实现

微服务的负载均衡可以通过多种组件来实现,以下是一些常见的负载均衡组件及其特点: Nginx: Nginx是一款轻量级的HTTP和反向代理服务器,也是一个高性能的负载均衡器。它支持多种负载均衡算法,如轮询、加权轮询、IP哈希等…...

Spring Boot 支持哪些云环境?

Spring Boot 对云环境的支持非常广泛,它本身是为云原生应用设计的,能够很好地与多种云平台集成。以下是小编给大家列举的一些 Spring Boot 支持的一些主要云环境: Pivotal Cloud Foundry: Pivotal 是 Spring Boot 的创建者&#x…...

第31天:安全开发-JS应用WebPack打包器第三方库JQuery安装使用安全检测

时间轴: 演示案例: 打包器-WebPack-使用&安全 第三方库-JQuery-使用&安全 打包器-WebPack-使用&安全 参考:https://mp.weixin.qq.com/s/J3bpy-SsCnQ1lBov1L98WA Webpack 是一个模块打包器。在 Webpack 中会将前端的所有资源…...

word如何快速创建目录?

文章目录 1,先自己写出目录的各级标题。2、选中目标标题,然后给它们编号3、给标题按照个人需求开始分级4、插入域构建目录。4.1、利用快捷键插入域构建目录4.2、手动插入域构建目录 听懂掌声!学会了吗? 前提声明:我在此…...

关于linux 下的中断

1. /proc/irq/<irq_number>/ 下属性详解 在 Linux 系统中&#xff0c;每个中断号&#xff08;IRQ&#xff09;都有一个对应的目录 /proc/irq/<irq_number>/&#xff0c;包含与该中断相关的属性文件。这些文件用于查看和配置中断的具体行为。 以下是 /proc/irq/&l…...

两个畸变矩阵相乘后还是一个2*2的矩阵,有四个畸变元素。1、畸变矩阵吸收了法拉第矩阵。2、畸变矩阵也给法拉第旋转角带来模糊(求解有多种可能)

角度一&#xff1b;恢复畸变的时候也把法拉第旋转恢复了 角度二&#xff1a;求解法拉第旋转角的时候 前面乘的复系数的不同也会带来法拉第旋转角和畸变的不同解 注意&#xff1a;无论多少个畸变矩阵相乘&#xff0c;结果都是2*2的矩阵&#xff0c;也就是畸变参数可以减少…...

MCU利用单总线协议(1-wire)读取DHT11温湿度

第1章 硬件连接 硬件原理图 第2章 通讯过程 用户MCU发送一次开始信号&#xff0c;DHT11从低功耗模式转换到高速模式&#xff0c;DHT11等待主机开始信号结束。DHT11等待主机开始信号结束后&#xff0c;DHT11发送响应信号。DHT11发送响应信号后&#xff0c;紧接着送出40bit的数据…...

[保姆式教程]使用目标检测模型YOLO11 OBB进行旋转目标检测:训练自己的数据集(基于卫星和无人机的农业大棚数据集)

之前写了一个基于YOLOv8z做旋转目标检测的文章&#xff0c;内容写得不够好&#xff0c;内容也比较杂乱。现如今YOLO已经更新到11了&#xff0c;数据集也集齐了无人机和卫星的农业大棚&#xff0c;所以这次就写一个基于YOLO11 OBB的农业大棚旋转检测。 1. 下载源码配置环境 在h…...

【网络安全】网站常见安全漏洞 - 网站基本组成及漏洞定义

文章目录 引言1. 一个网站的基本构成2. 一些我们经常听到的安全事件3. 网站攻击者及其意图3.1 网站攻击者的类型3.2 攻击者的意图 4. 漏洞的分类4.1 按来源分类4.2 按危害分类4.3 常见漏洞与OWASP Top 10 引言 在当今的数字化时代&#xff0c;安全问题已成为技术领域不可忽视的…...

Redis——个人笔记留存

今日内容 1. redis1. 概念2. 下载安装3. 命令操作1. 数据结构4. 持久化操作5. 使用Java客户端操作redis Redis 1. 概念&#xff1a; redis是一款高性能的NOSQL系列的非关系型数据库 1.1.什么是NOSQLNoSQL(NoSQL Not Only SQL)&#xff0c;意即“不仅仅是SQL”&#xff0c;是…...

人工智能_大模型091_大模型工作流001_使用工作流的原因_处理复杂问题_多轮自我反思优化ReAct_COT思维链---人工智能工作笔记0236

# 清理环境信息&#xff0c;与上课内容无关 import os os.environ["LANGCHAIN_PROJECT"] "" os.environ["LANGCHAIN_API_KEY"] "" os.environ["LANGCHAIN_ENDPOINT"] "" os.environ["LANGCHAIN_TRACING_V…...

linux上jdk1.8安装elasticsearch6.8.5踩坑总结

先在windows上下载了elasticsearch8安装成功后&#xff0c;本来是想在linux上也安装一个一样的版本&#xff0c;然后发现各种启动不了&#xff0c;查了一天原来jdk版本不同&#xff0c;需要下载不同版本的elasticsearch&#xff0c;我测试了8&#xff0c;7&#xff0c;6&#x…...

Three.js教程_02场景、相机与渲染器全面解析

Three.js 场景、相机与渲染器全面解析 Three.js 是一个强大的 JavaScript 库&#xff0c;用于在网页上创建和渲染 3D 图形。本文将深入解析 Three.js 中的几个核心概念&#xff0c;并介绍它们的用法及拓展方法。内容包括场景、相机、渲染器、网格对象、光源、坐标轴、控制器和…...

【数据结构】动态规划-基础篇

针对动态规划问题&#xff0c;我总结了以下5步&#xff1a; 确定dp数组以及下标的含义&#xff1b; 递推公式&#xff1b; dp数组如何初始化&#xff1b; 遍历顺序&#xff1b; 打印dp数组&#xff08;用来debug&#xff09;&#xff1b; 以上5步适用于任何动态规划问题&#x…...

opencv读取展示图片

import time import cv2 # 创建窗口 cv2.namedWindow(window, cv2.WINDOW_AUTOSIZE) # cv2.WINDOW_AUTOSIZE自动大小&#xff0c;不允许修改窗口大小 cat cv2.imread("./6.jpg", 0) # opencv默认读取bgr,0代表的是灰度图模式,1是彩色图 # 展示名字为window…...

网站访问统计A/B测试与数据分析

在网站运营中&#xff0c;访问统计和数据分析是优化用户体验和提高转化率的关键工具。A/B测试作为一种数据驱动的方法&#xff0c;能够帮助网站运营者验证设计和内容的有效性。A/B测试的基本原理是同时展示两个不同的版本&#xff08;A和B&#xff09;&#xff0c;通过比较它们…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...