【数据结构】动态规划-基础篇
针对动态规划问题,我总结了以下5步:
确定dp数组以及下标的含义;
递推公式;
dp数组如何初始化;
遍历顺序;
打印dp数组(用来debug);
以上5步适用于任何动态规划问题,下面针对题目,我们来具体实践:
说明:本题代码均为力扣AC代码。
题目一:斐波那契数
class Solution {
public:int fib(int n) {//1.dp[i]表示第i个斐波那契数的值//2.递推公式 dp[i] = dp[i-1] + dp[i-2]//3.dp[0] = 0 dp[1] = 1//4.遍历顺序:本题从前到后遍历即可if(n == 0 || n == 1)return n;vector<int>dp(n+1);dp[0] = 0;dp[1] = 1;for(int i = 2;i <= n;++i){dp[i] = dp[i-1] + dp[i-2];}return dp[n];//返回第n个斐波那契数的值}
};
当然,本题非常简单,不使用动态规划也是OK的。
class Solution {
public:int fib(int n) {//迭代if(n == 0 || n== 1)return n;vector<int>f(n+1);f[0] = 0;f[1] = 1;int cur = 0;for(int i = 2;i <= n;++i){cur = f[0] + f[1];f[0] = f[1];f[1] = cur;}return cur;}
};
题目二:爬楼梯
分析一波:为啥递推公式是dp[i] = dp[i-1]+dp[i-2]?dp[i]为到达第i阶有dp[i]种方法,.dp[i-1]为到达第i-1阶有dp[i-1]种方法,.dp[i-2]为到达第i-2阶有dp[i-2]种方法,要想到达第i阶,只需从第i-1阶爬一阶或者从第i-2阶爬二阶即可,所以dp[i] = dp[i-1]+dp[i-2]。
class Solution {
public:int climbStairs(int n) {//1.dp[i]为到达第i阶有dp[i]种方法//2.递推公式:dp[i] = dp[i-1]+dp[i-2]//3.dp[1] = 1,dp[2] = 2//遍历顺序:因为dp[i]依赖于dp[i-1]、dp[i-2],所以应该从前到后遍历vector<int> dp(n + 1);if(n == 1 || n == 2)return n;dp[1] = 1;dp[2] = 2;for(int i=3;i<=n;++i){dp[i] = dp[i-1]+dp[i-2];}return dp[n];//爬到第n阶一共有多少种方法}
};
题目三: 使用最小花费爬楼梯

分析一波:本题和上一道爬楼梯很相似,不过是加上了个花费,这里dp[i]为到达i阶楼梯最小的花费,要想到达第i阶,只需从第i-1阶爬一阶或者从第i-2阶爬二阶即可,从第i-1阶爬到第i阶需要花费dp[i-1]+cost[i-1],从第i-2阶爬到第i阶需要花费dp[i-2]+cost[i-2],本题要求最小花费,所以状态转移方程为dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]).
对于初始化,本题说了可以选择从下标为0或1的元素作为初始阶梯,还要注意一点是不跳不花费体力,所以dp[0] = 0,dp[1] = 0.
对于遍历顺序,由于dp[i]是依靠dp[i-1]和dp[i-2]推导的,所以遍历顺序是从前到后。
分析完以后,就能很丝滑的做出来啦!
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n = cost.size();vector<int>dp(n+1);dp[0] = 0;dp[1] = 0;for(int i=2;i<=n;++i){dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[n];}
};
题目四:不同路径
分析一波:本题是二维矩阵,所以dp数组应该定义成二维的,dp[i][j]代表从(0,0)位置走到(i,j)位置有多少种不同的路径,可以看到,如果想到达(i,j)的位置,只能从(i,j-1)的位置走一步或者从(i-1,j)的位置向下走一步,所以dp[i][j] = dp[i][j-1]+dp[i-1][j].
对于初始化,要想到达(i,j)的位置,要么从上面过来,要么从左边过来,所以我们要把最左边和最上边都初始化,初始化成多少呢?本题要求只能向右或者向下走,所以最上面行从最左侧走到最右侧只有一种走法,最左侧的列中从最上到最下也只有一种走法,所以初始化如下图。

class Solution {
public:int uniquePaths(int m, int n) {//创建m行n列的二维数组vector<vector<int>>dp(m,vector<int>(n));for(int i=0;i<m;++i)dp[i][0] = 1;for(int j=0;j<n;++j)dp[0][j] = 1;for(int i=1;i<m;++i){for(int j=1;j<n;++j){dp[i][j] = dp[i][j-1]+dp[i-1][j];}}return dp[m-1][n-1];}
};
题目五:不同路径II
本题和上一题类似,只是本题多了一个障碍物,对于状态转移方程,如果(i,j)位置有障碍的话,那么我们无法继续推导,所以我们需要添加一个条件就是当(i,j)位置不是障碍物时,我们进行推导,否则不去推导。对于初始化,和上一题不同的是,第一列如果有障碍物的话,障碍物后面的位置都无法到达,第一行也是如此,所以我们在初始化时应该加上一个条件,就是当前位置没有障碍物,我们才给dp[i][0]、dp[0][j]初始化成1.
class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1)return 0;//创建m行n列的二维数组vector<vector<int>>dp(m,vector<int>(n));//dp数组初始化for(int i = 0;i < m && obstacleGrid[i][0] == 0;++i)dp[i][0] = 1;for(int j = 0;j < n && obstacleGrid[0][j] == 0;++j)dp[0][j] = 1;for(int i = 1;i < m;++i){for(int j = 1;j < n;j++){if(!obstacleGrid[i][j])dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};
题目六:整数拆分
1.确定dp数组含义:dp[i]表示将i进行拆分后得到最大的乘积
2.确定递推公式:将i拆分成两个数最大积为j*(i-j),拆分成三个及以上为j*dp[i-j],这里有个问题,为什么j不拆?实际上,在我们拆分 dp[i-j] 过程中已经包含了拆分 j 的情况,所以这里只考虑如何对 i-j 进行拆分即可,所以递推公式为dp[i] = max(dp[i],max(j*(i-j),j*dp[i-j]))
3.dp数组如何初始化?根据dp数组含义,dp[0] = 0,dp[1] = 0,dp[2] = 1
4.遍历顺序:根据递推公式可以看出,dp[i]的状态依靠dp[i-j]的状态,所以是从前到后遍历。
class Solution {
public:int integerBreak(int n) {if(n == 0 || n == 1)return 0;if(n == 2)return 1;vector<int>dp(n+1);dp[0] = 0,dp[1] = 0,dp[2] = 1;for(int i=3;i<=n;++i){for(int j = 1;j<i;++j){dp[i] = max(dp[i],max(j*(i-j),j*dp[i-j]));}}return dp[n];}
};
对于本题,可以做一个小小的优化。对于拆分i使之乘积最大,一定是拆分成m个近似相同的子数才能得到最大乘积。只不过m我们不知道是几,但是可以确定的是m一定大于等于2,所以在判断条件中,只需要 j <= i/2 即可。举个例子,拆分10的话,可以拆分成5*5,也可以拆分成3*3*4,如果拆分成6*4,后续无论对4如何拆分都不可能得到最大的,因为我们要把i拆分成近似相同的子数才能得到最大值。
题目七:

1.明确dp数组及下标含义:1到i为节点的二叉搜索树的个数为dp[i]
2.递推公式:根据图中分析,dp[3]就是以元素1为头结点BST的数量+以元素2为头结点BST的数量+以元素3为头结点BST的数量,我们要计算dp[i],只需要让 j 从遍历 1 到 i,计算 j 为头结点对应BST的个数并将他们相加即可。注意,j为头结点时,其左子树数目为 j-1 个,右子树数目为 i-j 个状态转移方程:dp[i] += dp[j-1]*dp[i-j].
3.如何初始化?dp[0] = 1,因为空BST也是BST
4.遍历顺序:从前到后
class Solution {
public:int numTrees(int n) {if(n == 1)return 1;vector<int>dp(n+1);dp[0] = 1;for(int i=1;i<=n;++i){for(int j=1;j<=i;++j){dp[i] += dp[j-1]*dp[i-j];}}return dp[n];}
};
相关文章:
【数据结构】动态规划-基础篇
针对动态规划问题,我总结了以下5步: 确定dp数组以及下标的含义; 递推公式; dp数组如何初始化; 遍历顺序; 打印dp数组(用来debug); 以上5步适用于任何动态规划问题&#x…...
opencv读取展示图片
import time import cv2 # 创建窗口 cv2.namedWindow(window, cv2.WINDOW_AUTOSIZE) # cv2.WINDOW_AUTOSIZE自动大小,不允许修改窗口大小 cat cv2.imread("./6.jpg", 0) # opencv默认读取bgr,0代表的是灰度图模式,1是彩色图 # 展示名字为window…...
网站访问统计A/B测试与数据分析
在网站运营中,访问统计和数据分析是优化用户体验和提高转化率的关键工具。A/B测试作为一种数据驱动的方法,能够帮助网站运营者验证设计和内容的有效性。A/B测试的基本原理是同时展示两个不同的版本(A和B),通过比较它们…...
前端开发 之 15个页面加载特效下【附完整源码】
文章目录 十二:铜钱3D圆环加载特效1.效果展示2.HTML完整代码 十三:扇形百分比加载特效1.效果展示2.HTML完整代码 十四:四色圆环显现加载特效1.效果展示2.HTML完整代码 十五:跷跷板加载特效1.效果展示2.HTML完整代码 十二ÿ…...
详解八大排序(六)------(三路划分,自省排序,归并排序外排序)
文章目录 1. 快排之三路划分1. 1 三路划分的诞生由来1. 2 三路划分的具体思路1. 3 代码实现 2. 快排之自省排序2. 1 自省排序的目的2. 2 自省排序的思路2. 3 自省排序的实现代码 3. 归并排序外排序3. 1 外排序介绍3. 2 归并排序外排序的思路3. 3 归并排序的实现代码 1. 快排之三…...
【Java从入门到放弃 之 从字节码的角度异常处理】
从字节码的角度异常处理 生成字节码Javap 命令的使用基本语法 字节码文件testTryCatchtestTryCatchFinallytestTryWithResource 如果大家对与java的异常使用还有问题或者还不太了解,建议先看一下我之前写的Java异常了解一下基本 的异常处理知识,再看这篇…...
Java虚拟机(JVM)中的元空间(Metaspace)一些关键点的总结
• 元空间的引入:在Java 8中,JVM的内存结构经历了变化,其中方法区被替代为元空间(Metaspace)。元空间用于存储类的元数据信息,包括类的名称、方法、字段等信息。 • 存储位置:与方法区不同&…...
小程序 模版与配置
WXML模版语法 一、数据绑定 1、数据绑定的基本原则 (1)在data中定义数据 (2)在WXML中使用数据 2、在data中定义页面的数据 3、Mustache语法的格式(双大括号) 4、Mustache语法的应用场景 (…...
当大的div中有六个小的div,上面三个下面三个,当外层div高变大的时候我希望里面的小的div的高也变大
问: 当大的div中有六个小的div,上面三个下面三个,当外层div高变大的时候我希望里面的小的div的高也变大 回答: 这时候我们就不能写死六个小的div的高度,否则上下的小的div的间距就会变大,因为他们的高度…...
MySQL——操作
一.库的操作 1.基本操作 创建数据库 create database 数据库名称; 查看数据库 show databases; 删除数据库 drop database 数据库名称; 执行删除之后的结果: 数据库内部看不到对应的数据库 对应的数据库文件夹被删除,级联删除,里面的数据表全部被删…...
Python语法之正则表达式详解以及re模块中的常用函数
正则表达式详解及re模块中的常用函数 概念、作用和步骤 概念: 本身也是一个字符串,其中的字符具有特殊含义,将来我们可以根据这个字符串【正则表达式】去处理其他的字符串,比如可以对其他字符串进行匹配,切分…...
《地球化学》
《地球化学》主要报道近代地球化学, 特别是其主要分支学科, 如岩石地球化学、元素地球化学、有机地球化学、环境地球化学、矿床地球化学、实验地球化学、生物地球化学、天体化学、计算地球化学、分析地球化学、海洋地球化学、沉积地球化学、纳米地球化学、油气地球化学和同位素…...
alpine openssl 编译
./config no-shared --prefix/usr/local/openssl apk add musl-dev gcc g apk add linux-headers ssh root 登录 编辑 SSH 配置文件 打开 SSH 配置文件 /etc/ssh/sshd_config: vi /etc/ssh/sshd_config PermitRootLogin yes...
【AI模型对比】AI新宠Kimi与ChatGPT的全面对比:技术、性能、应用全揭秘
文章目录 Moss前沿AI技术背景Kimi人工智能的技术积淀ChatGPT的技术优势 详细对比列表模型研发Kimi大模型的研发历程ChatGPT的发展演进 参数规模与架构Kimi大模型的参数规模解析ChatGPT的参数体系 模型表现与局限性Kimi大模型的表现ChatGPT的表现 结论:如何选择适合自…...
【C#设计模式(17)——迭代器模式(Iterator Pattern)】
前言 迭代器模式可以使用统一的接口来遍历不同类型的集合对象,而不需要关心其内部的具体实现。 代码 //迭代器接口 public interface Iterator {bool HashNext();object Next(); } //集合接口 public interface Collection {Iterator CreateIterator(); } //元素迭…...
二、部署docker
二、安装与部署 2.1 安装环境概述 Docker划分为CE和EE,CE为社区版(免费,支持周期三个月),EE为企业版(强调安全,付费使用)。 Docker CE每月发布一个Edge版本(17.03&…...
FFmpeg 4.3 音视频-多路H265监控录放C++开发十九,ffmpeg封装
封装就是将 一个h264,和一个aac文件重新封装成一个mp4文件。 这里我们的h264 和 aac都是来源于另一个mp4文件,也就是说,我们会将 in.mp4文件解封装成一路videoavstream 和 一路 audioavstream,然后 将这两路的 avstream 合并成一…...
ML 系列:第 39 节 - 估计方法:最大似然估计 (MLE)
目录 一、说明 二、什么是最大似然估计 (MLE)? 2.1 理解公式 2.2 MLE 的定义 2.3 我们何时使用 MLE? 三、结论 一、说明 在统计学领域,我们经常需要根据观察到的数据估计统计模型的参数。为此目的广泛使用的两种关键方法是最大似然估计 ( MLE…...
Linux 权限管理:用户分类、权限解读与常见问题剖析
🌟 快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。🌟 🚩用通俗易懂且不失专业性的文字,讲解计算机领域那些看似枯燥的知识点🚩 目录 💯L…...
网络原理之 UDP 协议
目录 1. UDP 协议报文格式 2. UDP 的特点 (1) 无连接 (2) 不可靠 (3) 面向数据报 (4) 全双工 3. 基于 UDP 的应用层协议 前文是:UDP 的使用 首先了解一下基础知识: 1. UDP 协议报文格式 传输层最重要的协议有两个,一个是 TCP&#x…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...
