【数据结构】动态规划-基础篇
针对动态规划问题,我总结了以下5步:
确定dp数组以及下标的含义;
递推公式;
dp数组如何初始化;
遍历顺序;
打印dp数组(用来debug);
以上5步适用于任何动态规划问题,下面针对题目,我们来具体实践:
说明:本题代码均为力扣AC代码。
题目一:斐波那契数
class Solution {
public:int fib(int n) {//1.dp[i]表示第i个斐波那契数的值//2.递推公式 dp[i] = dp[i-1] + dp[i-2]//3.dp[0] = 0 dp[1] = 1//4.遍历顺序:本题从前到后遍历即可if(n == 0 || n == 1)return n;vector<int>dp(n+1);dp[0] = 0;dp[1] = 1;for(int i = 2;i <= n;++i){dp[i] = dp[i-1] + dp[i-2];}return dp[n];//返回第n个斐波那契数的值}
};
当然,本题非常简单,不使用动态规划也是OK的。
class Solution {
public:int fib(int n) {//迭代if(n == 0 || n== 1)return n;vector<int>f(n+1);f[0] = 0;f[1] = 1;int cur = 0;for(int i = 2;i <= n;++i){cur = f[0] + f[1];f[0] = f[1];f[1] = cur;}return cur;}
};
题目二:爬楼梯
分析一波:为啥递推公式是dp[i] = dp[i-1]+dp[i-2]?dp[i]为到达第i阶有dp[i]种方法,.dp[i-1]为到达第i-1阶有dp[i-1]种方法,.dp[i-2]为到达第i-2阶有dp[i-2]种方法,要想到达第i阶,只需从第i-1阶爬一阶或者从第i-2阶爬二阶即可,所以dp[i] = dp[i-1]+dp[i-2]。
class Solution {
public:int climbStairs(int n) {//1.dp[i]为到达第i阶有dp[i]种方法//2.递推公式:dp[i] = dp[i-1]+dp[i-2]//3.dp[1] = 1,dp[2] = 2//遍历顺序:因为dp[i]依赖于dp[i-1]、dp[i-2],所以应该从前到后遍历vector<int> dp(n + 1);if(n == 1 || n == 2)return n;dp[1] = 1;dp[2] = 2;for(int i=3;i<=n;++i){dp[i] = dp[i-1]+dp[i-2];}return dp[n];//爬到第n阶一共有多少种方法}
};
题目三: 使用最小花费爬楼梯

分析一波:本题和上一道爬楼梯很相似,不过是加上了个花费,这里dp[i]为到达i阶楼梯最小的花费,要想到达第i阶,只需从第i-1阶爬一阶或者从第i-2阶爬二阶即可,从第i-1阶爬到第i阶需要花费dp[i-1]+cost[i-1],从第i-2阶爬到第i阶需要花费dp[i-2]+cost[i-2],本题要求最小花费,所以状态转移方程为dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]).
对于初始化,本题说了可以选择从下标为0或1的元素作为初始阶梯,还要注意一点是不跳不花费体力,所以dp[0] = 0,dp[1] = 0.
对于遍历顺序,由于dp[i]是依靠dp[i-1]和dp[i-2]推导的,所以遍历顺序是从前到后。
分析完以后,就能很丝滑的做出来啦!
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n = cost.size();vector<int>dp(n+1);dp[0] = 0;dp[1] = 0;for(int i=2;i<=n;++i){dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[n];}
};
题目四:不同路径
分析一波:本题是二维矩阵,所以dp数组应该定义成二维的,dp[i][j]代表从(0,0)位置走到(i,j)位置有多少种不同的路径,可以看到,如果想到达(i,j)的位置,只能从(i,j-1)的位置走一步或者从(i-1,j)的位置向下走一步,所以dp[i][j] = dp[i][j-1]+dp[i-1][j].
对于初始化,要想到达(i,j)的位置,要么从上面过来,要么从左边过来,所以我们要把最左边和最上边都初始化,初始化成多少呢?本题要求只能向右或者向下走,所以最上面行从最左侧走到最右侧只有一种走法,最左侧的列中从最上到最下也只有一种走法,所以初始化如下图。

class Solution {
public:int uniquePaths(int m, int n) {//创建m行n列的二维数组vector<vector<int>>dp(m,vector<int>(n));for(int i=0;i<m;++i)dp[i][0] = 1;for(int j=0;j<n;++j)dp[0][j] = 1;for(int i=1;i<m;++i){for(int j=1;j<n;++j){dp[i][j] = dp[i][j-1]+dp[i-1][j];}}return dp[m-1][n-1];}
};
题目五:不同路径II
本题和上一题类似,只是本题多了一个障碍物,对于状态转移方程,如果(i,j)位置有障碍的话,那么我们无法继续推导,所以我们需要添加一个条件就是当(i,j)位置不是障碍物时,我们进行推导,否则不去推导。对于初始化,和上一题不同的是,第一列如果有障碍物的话,障碍物后面的位置都无法到达,第一行也是如此,所以我们在初始化时应该加上一个条件,就是当前位置没有障碍物,我们才给dp[i][0]、dp[0][j]初始化成1.
class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1)return 0;//创建m行n列的二维数组vector<vector<int>>dp(m,vector<int>(n));//dp数组初始化for(int i = 0;i < m && obstacleGrid[i][0] == 0;++i)dp[i][0] = 1;for(int j = 0;j < n && obstacleGrid[0][j] == 0;++j)dp[0][j] = 1;for(int i = 1;i < m;++i){for(int j = 1;j < n;j++){if(!obstacleGrid[i][j])dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};
题目六:整数拆分
1.确定dp数组含义:dp[i]表示将i进行拆分后得到最大的乘积
2.确定递推公式:将i拆分成两个数最大积为j*(i-j),拆分成三个及以上为j*dp[i-j],这里有个问题,为什么j不拆?实际上,在我们拆分 dp[i-j] 过程中已经包含了拆分 j 的情况,所以这里只考虑如何对 i-j 进行拆分即可,所以递推公式为dp[i] = max(dp[i],max(j*(i-j),j*dp[i-j]))
3.dp数组如何初始化?根据dp数组含义,dp[0] = 0,dp[1] = 0,dp[2] = 1
4.遍历顺序:根据递推公式可以看出,dp[i]的状态依靠dp[i-j]的状态,所以是从前到后遍历。
class Solution {
public:int integerBreak(int n) {if(n == 0 || n == 1)return 0;if(n == 2)return 1;vector<int>dp(n+1);dp[0] = 0,dp[1] = 0,dp[2] = 1;for(int i=3;i<=n;++i){for(int j = 1;j<i;++j){dp[i] = max(dp[i],max(j*(i-j),j*dp[i-j]));}}return dp[n];}
};
对于本题,可以做一个小小的优化。对于拆分i使之乘积最大,一定是拆分成m个近似相同的子数才能得到最大乘积。只不过m我们不知道是几,但是可以确定的是m一定大于等于2,所以在判断条件中,只需要 j <= i/2 即可。举个例子,拆分10的话,可以拆分成5*5,也可以拆分成3*3*4,如果拆分成6*4,后续无论对4如何拆分都不可能得到最大的,因为我们要把i拆分成近似相同的子数才能得到最大值。
题目七:

1.明确dp数组及下标含义:1到i为节点的二叉搜索树的个数为dp[i]
2.递推公式:根据图中分析,dp[3]就是以元素1为头结点BST的数量+以元素2为头结点BST的数量+以元素3为头结点BST的数量,我们要计算dp[i],只需要让 j 从遍历 1 到 i,计算 j 为头结点对应BST的个数并将他们相加即可。注意,j为头结点时,其左子树数目为 j-1 个,右子树数目为 i-j 个状态转移方程:dp[i] += dp[j-1]*dp[i-j].
3.如何初始化?dp[0] = 1,因为空BST也是BST
4.遍历顺序:从前到后
class Solution {
public:int numTrees(int n) {if(n == 1)return 1;vector<int>dp(n+1);dp[0] = 1;for(int i=1;i<=n;++i){for(int j=1;j<=i;++j){dp[i] += dp[j-1]*dp[i-j];}}return dp[n];}
};
相关文章:
【数据结构】动态规划-基础篇
针对动态规划问题,我总结了以下5步: 确定dp数组以及下标的含义; 递推公式; dp数组如何初始化; 遍历顺序; 打印dp数组(用来debug); 以上5步适用于任何动态规划问题&#x…...
opencv读取展示图片
import time import cv2 # 创建窗口 cv2.namedWindow(window, cv2.WINDOW_AUTOSIZE) # cv2.WINDOW_AUTOSIZE自动大小,不允许修改窗口大小 cat cv2.imread("./6.jpg", 0) # opencv默认读取bgr,0代表的是灰度图模式,1是彩色图 # 展示名字为window…...
网站访问统计A/B测试与数据分析
在网站运营中,访问统计和数据分析是优化用户体验和提高转化率的关键工具。A/B测试作为一种数据驱动的方法,能够帮助网站运营者验证设计和内容的有效性。A/B测试的基本原理是同时展示两个不同的版本(A和B),通过比较它们…...
前端开发 之 15个页面加载特效下【附完整源码】
文章目录 十二:铜钱3D圆环加载特效1.效果展示2.HTML完整代码 十三:扇形百分比加载特效1.效果展示2.HTML完整代码 十四:四色圆环显现加载特效1.效果展示2.HTML完整代码 十五:跷跷板加载特效1.效果展示2.HTML完整代码 十二ÿ…...
详解八大排序(六)------(三路划分,自省排序,归并排序外排序)
文章目录 1. 快排之三路划分1. 1 三路划分的诞生由来1. 2 三路划分的具体思路1. 3 代码实现 2. 快排之自省排序2. 1 自省排序的目的2. 2 自省排序的思路2. 3 自省排序的实现代码 3. 归并排序外排序3. 1 外排序介绍3. 2 归并排序外排序的思路3. 3 归并排序的实现代码 1. 快排之三…...
【Java从入门到放弃 之 从字节码的角度异常处理】
从字节码的角度异常处理 生成字节码Javap 命令的使用基本语法 字节码文件testTryCatchtestTryCatchFinallytestTryWithResource 如果大家对与java的异常使用还有问题或者还不太了解,建议先看一下我之前写的Java异常了解一下基本 的异常处理知识,再看这篇…...
Java虚拟机(JVM)中的元空间(Metaspace)一些关键点的总结
• 元空间的引入:在Java 8中,JVM的内存结构经历了变化,其中方法区被替代为元空间(Metaspace)。元空间用于存储类的元数据信息,包括类的名称、方法、字段等信息。 • 存储位置:与方法区不同&…...
小程序 模版与配置
WXML模版语法 一、数据绑定 1、数据绑定的基本原则 (1)在data中定义数据 (2)在WXML中使用数据 2、在data中定义页面的数据 3、Mustache语法的格式(双大括号) 4、Mustache语法的应用场景 (…...
当大的div中有六个小的div,上面三个下面三个,当外层div高变大的时候我希望里面的小的div的高也变大
问: 当大的div中有六个小的div,上面三个下面三个,当外层div高变大的时候我希望里面的小的div的高也变大 回答: 这时候我们就不能写死六个小的div的高度,否则上下的小的div的间距就会变大,因为他们的高度…...
MySQL——操作
一.库的操作 1.基本操作 创建数据库 create database 数据库名称; 查看数据库 show databases; 删除数据库 drop database 数据库名称; 执行删除之后的结果: 数据库内部看不到对应的数据库 对应的数据库文件夹被删除,级联删除,里面的数据表全部被删…...
Python语法之正则表达式详解以及re模块中的常用函数
正则表达式详解及re模块中的常用函数 概念、作用和步骤 概念: 本身也是一个字符串,其中的字符具有特殊含义,将来我们可以根据这个字符串【正则表达式】去处理其他的字符串,比如可以对其他字符串进行匹配,切分…...
《地球化学》
《地球化学》主要报道近代地球化学, 特别是其主要分支学科, 如岩石地球化学、元素地球化学、有机地球化学、环境地球化学、矿床地球化学、实验地球化学、生物地球化学、天体化学、计算地球化学、分析地球化学、海洋地球化学、沉积地球化学、纳米地球化学、油气地球化学和同位素…...
alpine openssl 编译
./config no-shared --prefix/usr/local/openssl apk add musl-dev gcc g apk add linux-headers ssh root 登录 编辑 SSH 配置文件 打开 SSH 配置文件 /etc/ssh/sshd_config: vi /etc/ssh/sshd_config PermitRootLogin yes...
【AI模型对比】AI新宠Kimi与ChatGPT的全面对比:技术、性能、应用全揭秘
文章目录 Moss前沿AI技术背景Kimi人工智能的技术积淀ChatGPT的技术优势 详细对比列表模型研发Kimi大模型的研发历程ChatGPT的发展演进 参数规模与架构Kimi大模型的参数规模解析ChatGPT的参数体系 模型表现与局限性Kimi大模型的表现ChatGPT的表现 结论:如何选择适合自…...
【C#设计模式(17)——迭代器模式(Iterator Pattern)】
前言 迭代器模式可以使用统一的接口来遍历不同类型的集合对象,而不需要关心其内部的具体实现。 代码 //迭代器接口 public interface Iterator {bool HashNext();object Next(); } //集合接口 public interface Collection {Iterator CreateIterator(); } //元素迭…...
二、部署docker
二、安装与部署 2.1 安装环境概述 Docker划分为CE和EE,CE为社区版(免费,支持周期三个月),EE为企业版(强调安全,付费使用)。 Docker CE每月发布一个Edge版本(17.03&…...
FFmpeg 4.3 音视频-多路H265监控录放C++开发十九,ffmpeg封装
封装就是将 一个h264,和一个aac文件重新封装成一个mp4文件。 这里我们的h264 和 aac都是来源于另一个mp4文件,也就是说,我们会将 in.mp4文件解封装成一路videoavstream 和 一路 audioavstream,然后 将这两路的 avstream 合并成一…...
ML 系列:第 39 节 - 估计方法:最大似然估计 (MLE)
目录 一、说明 二、什么是最大似然估计 (MLE)? 2.1 理解公式 2.2 MLE 的定义 2.3 我们何时使用 MLE? 三、结论 一、说明 在统计学领域,我们经常需要根据观察到的数据估计统计模型的参数。为此目的广泛使用的两种关键方法是最大似然估计 ( MLE…...
Linux 权限管理:用户分类、权限解读与常见问题剖析
🌟 快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。🌟 🚩用通俗易懂且不失专业性的文字,讲解计算机领域那些看似枯燥的知识点🚩 目录 💯L…...
网络原理之 UDP 协议
目录 1. UDP 协议报文格式 2. UDP 的特点 (1) 无连接 (2) 不可靠 (3) 面向数据报 (4) 全双工 3. 基于 UDP 的应用层协议 前文是:UDP 的使用 首先了解一下基础知识: 1. UDP 协议报文格式 传输层最重要的协议有两个,一个是 TCP&#x…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
