当前位置: 首页 > news >正文

opencv常用图像处理操作

OpenCV 处理图像的通用流程通常包括以下几个步骤,根据具体需求可以调整或跳过某些步骤。以下是一个通用的框架:

  1. 读取图像

加载图像文件到内存中以进行后续处理。

import cv2

读取图像

image = cv2.imread(‘image.jpg’) # 彩色图像
gray_image = cv2.imread(‘image.jpg’, cv2.IMREAD_GRAYSCALE) # 灰度图像

  1. 显示图像

在处理过程中,经常需要可视化结果以检查每个步骤的效果。

cv2.imshow(‘Image’, image)
cv2.waitKey(0) # 等待键盘输入
cv2.destroyAllWindows()

  1. 预处理

对图像进行基本的处理,准备输入给算法。

a. 调整大小

resized_image = cv2.resize(image, (width, height))

b. 图像裁剪

cropped_image = image[y1:y2, x1:x2]

c. 图像旋转

(h, w) = image.shape[:2]
center = (w // 2, h // 2)
matrix = cv2.getRotationMatrix2D(center, angle, scale)
rotated_image = cv2.warpAffine(image, matrix, (w, h))

d. 颜色空间转换

•	转为灰度图像:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

•	转为 HSV 色彩空间:

hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

e. 滤波

•	高斯模糊:

blurred_image = cv2.GaussianBlur(image, (5, 5), 0)

•	中值滤波:

median_blurred = cv2.medianBlur(image, 5)

  1. 图像增强

增强图像的特征以便更好地分析。

a. 直方图均衡化

适用于灰度图像的对比度增强。

equalized_image = cv2.equalizeHist(gray_image)

b. 图像阈值

将图像转换为二值图像。

_, binary_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY)

  1. 特征提取

从图像中提取有用的信息或特征。

a. 边缘检测

使用 Canny 算子提取边缘。

edges = cv2.Canny(image, 100, 200)

b. 轮廓检测

查找图像中的轮廓。

contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

c. 关键点检测

使用 SIFT 或 ORB 检测关键点。

orb = cv2.ORB_create()
keypoints = orb.detect(image, None)

  1. 图像分割

将图像分成多个感兴趣区域。

a. K-Means 分割

Z = image.reshape((-1, 3))
Z = np.float32(Z)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
_, labels, centers = cv2.kmeans(Z, K=2, bestLabels=None, criteria=criteria, attempts=10, flags=cv2.KMEANS_RANDOM_CENTERS)
segmented_image = centers[labels.flatten()].reshape((image.shape))

b. GrabCut

mask = np.zeros(image.shape[:2], np.uint8)
bg_model = np.zeros((1, 65), np.float64)
fg_model = np.zeros((1, 65), np.float64)
rect = (50, 50, 450, 290) # 初始矩形
cv2.grabCut(image, mask, rect, bg_model, fg_model, 5, cv2.GC_INIT_WITH_RECT)
result = np.where((mask == 2) | (mask == 0), 0, 1).astype(‘uint8’)
segmented_image = image * result[:, :, np.newaxis]

  1. 图像分析

根据需求进行进一步分析,如对象检测、特征匹配等。

a. 模板匹配

result = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

b. 对象检测

使用预训练的模型(如 YOLO 或 Haar Cascade)。

face_cascade = cv2.CascadeClassifier(‘haarcascade_frontalface_default.xml’)
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)

  1. 保存结果

将处理后的图像保存到文件。

cv2.imwrite(‘output.jpg’, processed_image)

完整处理流程示例

以下是一个综合处理的示例:

import cv2
import numpy as np

读取图像

image = cv2.imread(‘image.jpg’)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

边缘检测

edges = cv2.Canny(gray_image, 100, 200)

找到轮廓

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

绘制轮廓

cv2.drawContours(image, contours, -1, (0, 255, 0), 2)

显示结果

cv2.imshow(‘Contours’, image)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结

•	基础处理:读取、显示、裁剪、调整大小等。
•	预处理:灰度化、模糊、颜色空间转换。
•	特征提取与分析:边缘检测、轮廓检测、对象检测。
•	结果保存与展示:保存图像、生成可视化结果。

根据任务需求,选择不同的步骤和算法即可构建高效的图像处理管道。

相关文章:

opencv常用图像处理操作

OpenCV 处理图像的通用流程通常包括以下几个步骤,根据具体需求可以调整或跳过某些步骤。以下是一个通用的框架: 读取图像 加载图像文件到内存中以进行后续处理。 import cv2 读取图像 image cv2.imread(‘image.jpg’) # 彩色图像 gray_image cv2…...

Svn如何切换删除账号

记录Svn清除切换账号 1.首先打开小乌龟的设置如下图 打开设置后单击已保存数据,然后选择清除 接上图选择清除后,就可以打勾选择清除已保存的账号,我们再次检出的就可以切换账号了 👉总结 本次记录Svn清除切换账号 如能帮助到你…...

使用PaddleOCR遇到的问题Bug

Q1: 训练模型的预测效果比inference模型的预测效果差距很大,怎么办?原因是什么? A1: 训练模型:使用训练数据集进行训练后的模型。 inference模型:把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。训练过程中保存的模型是checkpoints模型,保存的只有模…...

了解Xcode在iOS开发中的作用和功能有哪些

Xcode是什么?它在iOS开发中的作用和功能有哪些? 一、Xcode是什么? Xcode是苹果公司针对macOS平台开发的一款集成开发环境(Integrated Development Environment,简称IDE)。它主要用于开发iOS、iPadOS、mac…...

《船舶物资与市场》是什么级别的期刊?是正规期刊吗?能评职称吗?

问题解答 问:《船舶物资与市场》是不是核心期刊? 答:不是,是知网收录的正规学术期刊。 问:《船舶物资与市场》级别? 答:国家级。主管单位:中国船舶集团有限公司 主办单…...

商汤完成组织架构调整,改革完成的商汤未来何在?

首先,从核心业务的角度来看,商汤科技通过新架构明确了以AI云、通用视觉模型等为核心业务的战略方向。这一举措有助于商汤科技集中资源,加强在核心业务领域的研发和市场拓展,提高市场竞争力。同时,坚定生成式AI为代表的…...

MyBatis异常体系中ErrorContext和ExceptionFactory原理分析

🎮 作者主页:点击 🎁 完整专栏和代码:点击 🏡 博客主页:点击 文章目录 exceptions包分包设计ExceptionFactory类介绍为什么使用工厂不是直接new呢?【统一的异常处理机制】【异常的封装与转化】【…...

WHLUG丨deepin、华中科技大学开放原子开源俱乐部、 RustSBI 和清华大学开源操作系统训练营共话开源新生代成长之路

2024年11月30日下午,由 deepin(深度)社区联合华中科技大学开放原子开源俱乐部、 RustSBI 开源社区和清华大学开源操作系统训练营共同举办的WHLUG(武汉Linux用户组)线下沙龙在华中科技大学成功举办。 本次活动聚集了50余…...

通过HTML Canvas 在图片上绘制文字

目录 前言 一、HTML Canvas 简介 二、准备工作 三、绘制图片 四、绘制文字 五、完整代码 效果演示: 前言 HTML canvas 为我们提供了无限的创意可能性。今天,我们就来探索一下如何通过 HTML canvas 将图片和文字绘制到图片上,创造出独特…...

C# 冒泡的算法

C# 冒泡的算法 public void BubbleSort(int[] arr) {int temp;for (int j 0; j < arr.Length - 2; j){for (int i 0; i < arr.Length - 2; i){if (arr[i] > arr[i 1]){temp arr[i 1];arr[i 1] arr[i];arr[i] temp;}}} }使用方法 int[] array new int[] { 5,…...

大数据项目-Django基于聚类算法实现的房屋售房数据分析及可视化系统

《[含文档PPT源码等]精品Django基于聚类算法实现的房屋售房数据分析及可视化系统》该项目含有源码、文档、PPT、配套开发软件、软件安装教程课程答疑等&#xff01; 数据库管理工具&#xff1a;phpstudy/Navicat或者phpstudy/sqlyog 后台管理系统涉及技术&#xff1a; 后台使…...

AWS创建ec2实例并连接成功

aws创建ec2实例并连接 aws创建ec2并连接 1.ec2创建前准备 首先创建一个VPC隔离云资源并且有公有子网 2.创建EC2实例 1.启动新实例或者创建实例 2.创建实例名 3.选择AMI使用linux(HVM) 4.选择实例类型 5.创建密钥对下载到本地并填入密钥对名称 6.选择自己创建的VPC和公有子网…...

TypeScript 开始学习 -接触的新东西

目录 语言类型类型总览JavaScript 中的数据类型TypeScript 中的数据类型 定义类型断言索引签名泛型 语言类型 JS -> 弱类型 TS -> 强类型 TypeScript&#xff08;TS&#xff09;是一种强类型语言。‌这意味着在TypeScript中&#xff0c;变量和函数参数的类型必须在编译时…...

非对称任意进制转换器(安卓)

除了正常进制转换&#xff0c;还可以输入、输出使用不同的数字符号&#xff0c;达成对数值进行加密的效果 点我下载APK安装包 使用unity开发。新建一个c#代码文件&#xff0c;把代码覆盖进去&#xff0c;再把代码文件添加给main camera即可。 using System.Collections; usin…...

【优选算法篇】寻找隐藏的宝藏:用二分查找打开算法世界的大门(上篇)

文章目录 须知 &#x1f4ac; 欢迎讨论&#xff1a;如果你在学习过程中有任何问题或想法&#xff0c;欢迎在评论区留言&#xff0c;我们一起交流学习。你的支持是我继续创作的动力&#xff01; &#x1f44d; 点赞、收藏与分享&#xff1a;觉得这篇文章对你有帮助吗&#xff1…...

基于Vue实现的移动端手机商城项目 电商购物网站 成品源码

&#x1f4c2;文章目录 一、&#x1f4d4;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站演示 &#x1f4f8;部分截图 &#x1f3ac;视频演示 五、⚙️网站代码 &#x1f9f1;项目结构 &#x1f492;vue代码预览 六、&#x1f527;完整…...

C语言:数组

数组 数组的概念 引例 如果我们要在程序中表示一个学生的成绩&#xff0c;我们会使用一个int来表示&#xff0c;如&#xff1a;int score。假如我们要在程序中表示一组成绩&#xff0c;此时我们所学的常规的数据类型就无法再表示&#xff0c;这个时候我们就需要使用一种新的…...

时间序列预测之FiLM

没错&#xff0c;就是看电影 文章目录 前言1. 问题描述2. 创新之处3. 贡献 一、时间序列在legende - fourier域的表示1. 勒让德投影2. 傅里叶变换 二、 模型结构1. LPU: Legendre Projection Unit2. FEL: Frequency Enhanced Layer3. 多尺度专家机制的混合 二、实验结果长时预测…...

【机器学习】窥数据之序,悟算法之道:机器学习的初心与远方

文章目录 机器学习入门&#xff1a;从零开始学习基础与应用前言第一部分&#xff1a;什么是机器学习&#xff1f;1.1 机器学习的定义1.1.1 举个例子&#xff1a;垃圾邮件分类器 1.2 机器学习的核心思想1.2.1 数据驱动的模式提取1.2.2 为什么机器学习比传统方法更灵活&#xff1…...

OpenCL介绍

OpenCL&#xff08;Open Computing Language&#xff09;详解 OpenCL 是一个开源的框架&#xff0c;用于编写在异构平台&#xff08;包括中央处理单元&#xff08;CPU&#xff09;、图形处理单元&#xff08;GPU&#xff09;、数字信号处理器&#xff08;DSP&#xff09;和其他…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...