【LeetCode】122.买卖股票的最佳时机II
文章目录
- 题目链接:
- 题目描述:
- 解题思路一(贪心算法):
- 解体思路二(动态规划):
题目链接:
122.买卖股票的最佳时机II
题目描述:

解题思路一(贪心算法):
本问题可以通过贪心算法解决。我们可以将问题分解为一系列连续的上涨子序列,并在每个上涨子序列中,计算利润,并将其累加到最终的结果中。具体的做法是:
- 贪心算法的核心思想:对于每个上升的子序列,我们希望在价格上涨时不断买入,价格下跌时卖出。
- 连续上升子序列:在遍历股票价格的过程中,如果当前价格小于下一天的价格,说明价格在上涨,应该继续持有股票;如果当前价格大于或等于下一天的价格,说明我们已经遇到了一个下降的趋势,在此时卖出,计算当前区间的利润。
- 利润计算:每次找到一个上涨子序列时,我们就将该子序列的利润(即当前价格减去子序列的起始价格)累加到总利润中。
复杂度分析:
时间复杂度O(N)空间复杂度O(1)
代码实现方式一:
找到每一个连续递增子序列,将其差值作为利润记录到总利润中
class Solution {
public:int maxProfit(vector<int>& prices) {int p1 = 0;int p2 = 0;int res = 0;int n = prices.size();while(p2<n-1){if(prices[p2]< prices[p2+1]){p2++;continue;}else{res = res + (prices[p2]-prices[p1]);p2++;p1=p2;}}return res+(prices[p2]-prices[p1]);}
};
代码实现方式2:
- 每次遍历数组,比较相邻的价格(即
prices[i]和prices[i+1]): - 如果
prices[i+1] > prices[i],则说明价格上涨,可以在今天买入,明天卖出,获得的利润是prices[i+1] - prices[i]。 - 如果
prices[i+1] <= prices[i],则不进行操作,不获得任何利润。
利用max(0, prices[i+1] - prices[i])确保当价格下降时不加入负的利润。 - 本质上与第一种方式一致,但是这种实现方式更简洁
class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();int res = 0;for(int i=0; i<n-1; i++){res += max(0, prices[i+1]-prices[i]);}return res;}
};
解体思路二(动态规划):
由于题目中要求在任何时候手里最多只有一支股票,因此在每天交易完成后,只可能手里有一支股票或者没有股票的状态
我们可以定义:
dp[i][0]: 表示第i天交易完成后手里没有股票的最大利润(i从0开始)dp[i][1]: 表示第i天交易完成后手里持有一支股票的最大利润(i从0开始)
因此dp[i][0] 的转移方程,如果这一天交易完成后手里没有股票,那么可能的状态转移为前一天已经没有股票了,即 dp[i-1][0],或者前一天结束的时候手里有一支股票,即dp[i-1][1],这时候我们要将其卖出,并获得prices[i]收益。因此为了利益最大化,我们的状态转移方程:
d p [ i ] [ 0 ] = max ( d p [ i − 1 ] [ 0 ] , d p [ i − 1 ] [ 1 ] + p r i c e s [ i ] ) dp[i][0] = \max \left( dp[i-1][0], dp[i-1][1] + prices[i] \right) dp[i][0]=max(dp[i−1][0],dp[i−1][1]+prices[i])
再来考虑dp[i][1],如果转移状态前一天已经持有一支股票。即dp[i-1][1],或者前一天结束的时候手里没有股票,即dp[i-1][0],这时候我们要将其买入,并减少prices[i]的收益。可以列出状态转移方程:
d p [ i ] [ 1 ] = max ( d p [ i − 1 ] [ 0 ] − p r i c e s [ i ] , d p [ i − 1 ] [ 1 ] ) dp[i][1] = \max \left( dp[i-1][0] - prices[i], dp[i-1][1] \right) dp[i][1]=max(dp[i−1][0]−prices[i],dp[i−1][1])
对于初始状态,我们直到在第0天交易结束的时候:
dp[0][0] = 0dp[0][1] = -prices[0]
代码实现:
class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();int dp[n][2];dp[0][0] = 0;dp[0][1] = -prices[0];for(int i=1; i<n; i++){dp[i][0] = max(dp[i-1][0], dp[i-1][1]+prices[i]);dp[i][1] = max(dp[i-1][0]-prices[i], dp[i-1][1]);}return dp[n-1][0];}
};
动态规划解析参考:
https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-ii/solutions/476791/mai-mai-gu-piao-de-zui-jia-shi-ji-ii-by-leetcode-s/?envType=study-plan-v2&envId=top-interview-150
相关文章:
【LeetCode】122.买卖股票的最佳时机II
文章目录 题目链接:题目描述:解题思路一(贪心算法):解体思路二(动态规划): 题目链接: 122.买卖股票的最佳时机II 题目描述: 解题思路一(贪心算法…...
openGauss开源数据库实战十九
文章目录 任务十九 openGauss DML 语句测试任务目标实施步骤一、准备工作二、INSERT语句三、DELETE语句四、UPDATE语句五、清理工作 任务十九 openGauss DML 语句测试 任务目标 掌握DML语句的用法,包括INSERT语句、DELETE语句和UPDATE语句。 实施步骤 一、准备工作 使用Li…...
恶补英语初级第18天,《询问他人的喜好(上)》
对话 Do you like coffee? Yes, I do. Do you want a cup? Yes, please. Do you want any sugar? Yes, please. Do you want any milk? No, thank you. I don’t like milk in my coffee, I like black coffee. Do you like biscuits? Yes, I do. Do you want one? Yes, …...
centos 报 ping: www.baidu.com: Name or service not known
[rootlocalhost ~]$ ping www.baidu.com ping: www.baidu.com: Name or service not known解决办法: 首先要求检查特定文件(/etc/resolv.conf)内是否正确配置了 DNS sudo vim /etc/resolv.conf没有正确配置可以添加如下代码: n…...
Python:使用随机森林分类器进行模型评估:ROC 曲线与 AUC 指标计算
前言 这段代码的目标是使用 随机森林分类器(Random Forest Classifier) 来进行二分类任务,并基于每个数据子集计算 ROC 曲线(Receiver Operating Characteristic Curve)以及 AUC(Area Under Curve…...
数据库表约束完全指南:提升数据完整性和准确性
数据库表约束完全指南:提升数据完整性和准确性 在数据库设计中,表约束是确保数据完整性和准确性的关键工具。本文将详细介绍各种类型的表约束及其使用方法,包括非空约束、唯一约束、主键约束、外键约束、默认值约束、检查约束以及自动递增约…...
【JavaEE】多线程(6)
一、用户态与内核态 【概念】 用户态是指用户程序运行时的状态,在这种状态下,CPU只能执行用户态下的指令,并且只能访问受限的内存空间 内核态是操作系统内核运行时的状态,内核是计算机系统的核心部分,CPU可以执行所有…...
BERT和RoBERTa;双向表示与单向的简单理解
目录 BERT和RoBERTa大型预训练语言模型 BERT的原理 RoBERTa的原理 举例说明 双向表示与单向的简单理解 除了预训练语言模型,还有什么模型 一、模型类型与结构 二、训练方式与数据 三、应用场景与功能 四、技术特点与优势 BERT和RoBERTa大型预训练语言模型 BERT(Bi…...
Pytorch使用手册-计算机视觉迁移学习教程(专题十三)
在本教程中,你将学习如何使用迁移学习训练一个卷积神经网络进行图像分类。更多关于迁移学习的内容可以参考 CS231n 课程笔记。 引用课程笔记中的内容: 实际上,很少有人从头开始训练一个完整的卷积网络(随机初始化),因为拥有足够大数据集的情况相对罕见。相反,通常会在非…...
Jackson - Java对象与JSON相互转换
在这篇文章中,我将向您展示如何使用Jackson-databind API来实现Java对象与JSON之间的绑定,以及如何将JSON数据转换为Java对象。 对于Java开发者来说,将JSON转换为Java对象及反向操作是一个常见的任务,因此我将通过示例演示如何完…...
怎麼解決路由器IP地址衝突?
路由器IP地址衝突通常發生在網路中有兩個設備嘗試使用相同的IP地址時。這種衝突會導致網路連接問題,因為每個設備需要一個唯一的IP地址才能正常通信。 1. 重啟設備 重啟路由器和設備:有時候簡單的重啟可以解決問題,設備重新獲取一個新的IP地…...
趣味数学 2.3.7 | 完全免费,无注册登录,简约纯净
趣味数学是一款完全免费的数学学习软件,支持安卓系统。它无需登录注册,界面简约纯净,分类详细,涵盖趣味数学、数学初练、应用计算、数字推理、图形推理、数字2048、题目练习和数学知识等多个分类。每个分类包含丰富的题目和关卡&a…...
Oracle ASM特性介绍和增删盘操作
1. 介绍 1.1. 在没有ASM之前ORACLE数据库靠什么去解决存储问题: 裸设备:裸设备就是没有被文件系统格式化的分区或者是直接挂载到操作系统上的磁盘。ORACLE可以直接将数据写入到裸设备中,读写能非常优异。像ORACLE的数据文件、控制文件、REDO日志在过去…...
深度优先搜索迷宫路径
深度优先搜索迷宫路径 问题描述 我们需要编写一个程序,通过深度优先搜索(DFS)找到从迷宫左上角到右下角的一条通路。 迷宫的表示: 迷宫由 0 和 1 构成的二维数组表示。0 表示可以走的路径,1 表示障碍。用户输入迷宫的…...
多媒体技术的 发展阶段----高中信息技术教资面试
上课,同学们好!请坐 在正式上课之前,老师带来 了一段微课视频,请同学们认真观看大屏幕。等下来回答老师的问题。 好,视频播放完成了,现在老师想问问大家。大家从视频中都看到了什么尼?好&…...
行为型设计模式之《责任链模式》实践
定义 责任链模式(Chain Of Responsibility Pattern)顾名思义,就是为请求创建一条处理链路,链路上的每个处理器都判断是否可以处理请求,如果不能处理则往后走,依次从链头走到链尾,直到有处理器可…...
中酱黑松露手工古法酱油,邂逅独特 “酱油红”
在美食的世界里,调味品往往扮演着画龙点睛的角色,它们虽不似主食材那般夺目,却能悄无声息地赋予菜肴灵魂与韵味。而今天,要带大家走进的,便是中酱手工古法酱油所营造出的独特美味天地,去领略那一抹别具魅力…...
Java NIO channel
channel(通道),byteBuffer(缓冲区),selector(io多路复用),通道FileChannel,SocketChannel的transferTo,transferFrom,MappedByteBuffer实现了零拷贝。 JVM调操作系统方法,read,write,都可以送字…...
智能交通(8)——腾讯开悟智能交通信号灯调度赛道
本文档用于记录参加腾讯开悟智能信号灯调度赛道的模型优化过程。官方提供了dqn和target_dqn算法,模型的优化在官方提供的代码基础上进行。最终排名是在榜单16,没能进入最后的决赛。 一.赛题介绍 赛题简介:在本地赛题中,参赛团队…...
ip所属地址是什么意思?怎么改ip地址归属地
在数字化时代,IP地址作为网络设备的唯一标识符,不仅关乎设备间的通信,还涉及到用户的网络身份与位置信息。IP所属地址,即IP地址的归属地,通常反映了设备连接互联网时的地理位置。本文将深入解析IP所属地址的含义&#…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
