当前位置: 首页 > news >正文

【llm_inference】react框架(最小code实现)

ReAct:结合推理和行动的大语言模型推理架构

GitHub Code: 人人都能看懂的最小实现

引言

在人工智能领域,大语言模型(LLM)的应用日益广泛,但如何让模型能够像人类一样,在思考的基础上采取行动,并根据行动结果继续推理,这是一个重要的研究方向。ReAct(Reasoning + Acting)推理架构就是为解决这一问题而生的。本文将深入剖析 ReAct 推理架构的实现原理和具体应用。

ReAct 架构概述

ReAct 是一种结合了推理(Reasoning)和行动(Acting)的语言模型推理架构。它允许模型在回答问题时,通过不断的思考、采取行动、观察结果,最终得出答案。这种方式模拟了人类解决问题的过程,使得模型的推理过程更加透明和可控。

核心组件

  1. 思考(Thought):模型对当前情况进行分析和推理
  2. 行动(Action):根据推理结果选择并执行特定工具
  3. 观察(Observation):获取行动的结果
  4. 最终答案(Final Answer):综合所有信息得出的结论

技术实现解析

1. 工具定义

class WebSearch:def __init__(self, name:str='web_search', threshold:int=8000):self.system_prompt = """
你是一位洞察研究员。
1. 为用户查询寻找详细信息,并尽可能简单地将内容总结为一句话
2. 如果用户的问题是关于具体数值的,只返回数值结果,不需要任何额外解释。
"""self.name = nameself.description = "用于网络搜索的工具"

这个实现展示了如何定义一个工具类,每个工具都包含:

  • 名称(name)
  • 描述(description)
  • 系统提示(system_prompt)
  • 执行逻辑(__call__方法)

2. 推理流程实现

ReAct 的核心推理流程通过 react 函数实现:

def react(question: str, tools: List[Callable]) -> str:# 构建提示模板# 循环执行推理过程# 解析响应并执行工具# 返回最终答案
关键步骤解析:
  1. 提示词构建

    • 将可用工具信息注入到提示模板中
    • 设定标准化的输出格式
    • 引导模型按照 Thought-Action-Observation 循环进行推理
  2. 循环推理过程

    • 获取模型响应
    • 解析响应中的行动指令
    • 执行相应工具
    • 将观察结果反馈给模型
  3. 结果处理

    • 使用正则表达式提取最终答案
    • 格式化输出结果

实现细节深度解析

1. 消息格式化

def format_message(messages: List[Dict], last_content_length: int = 0) -> int:"""格式化打印新增的消息内容"""

这个函数巧妙地实现了增量式的消息打印,通过记录上次打印的内容长度,只打印新增的内容,提高了交互体验。

2. 工具执行机制

工具执行采用了装饰器模式,通过 __call__ 方法实现了统一的调用接口:

def __call__(self, query:str):results = serpapi_search(query)msg = [{"role":"system","content":self.system_prompt},{"role":"user", "content": f"查询内容是:{query},搜索结果是:{results}"}]answer = get_model_response_sync(model_name="deepseek-chat", messages=msg)return answer

3. 正则表达式解析

使用正则表达式精确提取模型响应中的关键信息:

regex = r"Action: \[(.*?)\][\s]*Action Input: (.*?)(?:\n|$)"
action_match = re.search(regex, response, re.DOTALL)

应用示例

以下是一个实际的应用示例:

def main():query = "2024年欧洲杯和2024年美洲杯冠军"print("\n🚀 Starting new query:", query)search_tool = WebSearch()tools = [search_tool]result = react(query, tools)print("最终答案:")print(result)

这个例子展示了如何使用 ReAct 架构来回答一个需要实时信息的问题。系统会:

  1. 初始化搜索工具
  2. 提交查询
  3. 通过反复推理和搜索
  4. 最终得出答案

总结

ReAct 推理架构为大语言模型提供了一个强大的推理框架,使其能够像人类一样思考和行动。通过将推理过程分解为思考、行动和观察三个步骤,不仅提高了模型的推理能力,还增强了推理过程的可解释性。

这种架构特别适合需要多步推理和外部工具调用的复杂任务,例如信息搜索、数据分析等。通过合理的工具设计和灵活的扩展机制,ReAct 架构可以适应各种不同的应用场景。

相关文章:

【llm_inference】react框架(最小code实现)

ReAct:结合推理和行动的大语言模型推理架构 GitHub Code: 人人都能看懂的最小实现 引言 在人工智能领域,大语言模型(LLM)的应用日益广泛,但如何让模型能够像人类一样,在思考的基础上采取行动&#xff0c…...

PT8M2103 触控 I/O 型 8-Bit MCU

1 产品概述 ● PT8M2103 是一款可多次编程(MTP)I/O 型8位 MCU,其包括 2K*16bit MTP ROM、256*8bit SRAM、PWM、Touch 等功能,具有高性能精简指令集、低工作电压、低功耗特性且完全集成触控按键功能。为各种触控按键的应用,提供了一种简单而又…...

英语时态学习+名词副词形容词变形方式

开发出头不容易 不如跨界卷英语 英语中的16种时态是由四种时间(现在、过去、将来、过去将来)和四种体(一般、进行、完成、完成进行)组合而成的。以下是每种时态的详细说明和例句: 一般现在时 (Simple Present) 用法…...

浏览器解析页面流程

从输入一个url到页面解析完成的流程 1. 网络进程 1. 获取url 浏览器首先判断输入的url是否有http缓存,如果有则直接从http缓存中读取数据并显示。如果没有,则进行下一步。进行DNS解析,获取域名对应的IP地址。 2.下载html文件 浏览器根据I…...

图的遍历之DFS邻接矩阵法

本题要求实现一个函数,对给定的用邻接矩阵存储的无向无权图,以及一个顶点的编号v,打印以v为起点的一个深度优先搜索序列。 当搜索路径不唯一时,总是选取编号较小的邻接点。 本题保证输入的数据(顶点数量、起点的编号等…...

Java --- JVM编译运行过程

目录 一.Java编译与执行流程: 二.编译过程: 1.编译器(javac): 2.字节码文件(.class): 三.执行过程: 1.启动JVM(Java虚拟机): 2…...

HTML5 拖拽 API 深度解析

一、HTML5 拖拽 API 深度解析 1.1 背景与发展 HTML5 的拖拽 API 是为了解决传统拖拽操作复杂而设计的。传统方法依赖鼠标事件和复杂的逻辑计算,而 HTML5 提供了标准化的拖拽事件和数据传递机制,使得开发者能够快速实现从一个元素拖拽到另一个元素的交互…...

GO--基于令牌桶和漏桶的限流策略

至于为什么要限流,字面意思已经很清楚了,就是为了减轻服务器的压力 下面我们将介绍两个限流策略----漏桶和令牌桶。 漏桶 原理介绍 漏桶,顾名思义就是一个漏斗,漏斗嘴的大小是固定的,所以不管漏斗现容量多大&#…...

MongoDB性能监控工具

mongostat mongostat是MongoDB自带的监控工具,其可以提供数据库节点或者整个集群当前的状态视图。该功能的设计非常类似于Linux系统中的vmstat命令,可以呈现出实时的状态变化。不同的是,mongostat所监视的对象是数据库进程。mongostat常用于…...

Axure设计之模拟地图人员移动轨迹

在产品原型设计时,为了更好的表达和呈现预期的效果,让客户或开发看一眼就能理解要实现的功能,往往需要在产品设计时尽量去接近现实,这就需要我们在使用Axure制作原型时应具有高度细节和逼真度的原型设计。原型设计不仅包含了产品的…...

Android环境搭建

Android环境搭建 第一步:安装 Homebrew 执行以下命令来安装 Homebrew: /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"检测是否安装成功: brew --version第二步:安装 No…...

前端工程化面试题(一)

如何使用 Docker 部署前端项目? 使用 Docker 部署前端项目通常涉及以下几个步骤: 创建项目:首先,需要在本地创建并配置好前端项目。 准备 Docker 文件: .dockerignore:这个文件用于排除不需要上传到 Dock…...

模型案例:| 手机识别模型!

导读 2023年以ChatGPT为代表的大语言模型横空出世,它的出现标志着自然语言处理领域取得了重大突破。它在文本生成、对话系统和语言理解等方面展现出了强大的能力,为人工智能技术的发展开辟了新的可能性。同时,人工智能技术正在进入各种应用领…...

期权懂|个股期权交割操作流程是什么样的?

期权小懂每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 个股期权交割操作流程是什么样的? 一、行权申报: 期权买方在行权日通过其经纪商提交行权指令,表明其决定行使期权权利。 二、行权匹配&#xf…...

【openGauss】openGauss execute执行update语句,获取更新的行数

【openGauss】openGauss execute执行update语句,获取更新的行数 在openGauss中,可以使用execute语句执行update语句,并通过GET DIAGNOSTICS语句获取更新的行数。下面是一个示例: DO $$ DECLAREupdated_rows INTEGER; BEGINEXECUT…...

P8780 [蓝桥杯 2022 省 B] 刷题统计

题目描述 小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做 𝑎道题目,周六和周日每天做 𝑏 道题目。请你帮小明计算,按照计划他将在第几天实现做题数大于等于 𝑛 题? 输入格式 输入一行包含三…...

切比雪夫不等式:方差约束下的概率估计

切比雪夫不等式:方差约束下的概率估计 背景 在概率分析中,切比雪夫不等式是一个常用的工具,它通过引入随机变量的 方差信息,给出了偏离均值的概率界限。这一不等式是对 马尔科夫不等式 的自然扩展,结合了更丰富的分布…...

使用CancellationTokenSource来控制长时间sql查询中断

前端 <!-- 透明的覆盖层&#xff0c;显示在页面上方&#xff0c;包含进度条 --><Grid Visibility"{Binding IsLoading}" Background"Transparent" HorizontalAlignment"Stretch" VerticalAlignment"Stretch" ZIndex"1&…...

小红薯最新x-s 算法补环境教程12-06更新(下)

在上一篇文章中已经讲了如何去定位x-s生成的位置&#xff0c;本篇文章就直接开始撸代码吧 如果没看过的话可以看&#xff1a;小红薯最新x-s算法分析12-06&#xff08;x-s 56&#xff09;&#xff08;上&#xff09;-CSDN博客 1、获取加密块代码 首先来到参数生成的位置&…...

wazuh-modules-sca

wazuh中安全配置评估模块主线程执行wm_sca_main最后在wm_sca_start中循环执行&#xff0c;不会返回 // Module main function. It wont return #ifdef WIN32 DWORD WINAPI wm_sca_main(void *arg) {wm_sca_t *data (wm_sca_t *)arg; #else void * wm_sca_main(wm_sca_t * dat…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...