数据结构——图(遍历,最小生成树,最短路径)
目录
一.图的基本概念
二.图的存储结构
1.邻接矩阵
2.邻接表
三.图的遍历
1.图的广度优先遍历
2.图的深度优先遍历
四.最小生成树
1.Kruskal算法
2.Prim算法
五.最短路径
1.单源最短路径--Dijkstra算法
2.单源最短路径--Bellman-Ford算法
3.多源最短路径--Floyd-Warshall算法
六.整体实现
1.UnionFindSet.h
2.Graph.h
3.test.cpp
一.图的基本概念
图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中:
顶点集合V = {x|x属于某个数据对象集}是有穷非空集合;
E = {(x,y)|x,y属于V}或者E = {|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫做边的集合
(x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path(x, y)表示从x到y的一条单向通路,即Path(x, y)是有方向的
顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>
有向图和无向图:在有向图中,顶点对是有序的,顶点对<x,y>称为顶点x到顶点y的一条边(弧),和是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x, y) 是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x) 是同一条边,比如下图G1和G2为无向图。注意:无向边(x, y)等于有向边和
完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边, 则称此图为无向完全图,比如上图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图G4
邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向图G中,若是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶 点u,并称边与顶点u和顶点v相关联
顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注 意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)
路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径
路径长度:对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一 条路径的路径长度是指该路径上各个边权值的总和
简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路 径。若路径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环
子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图
连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一 对顶点都是连通的,则称此图为连通图
强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图是强连通图
生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点和n1条边
二.图的存储结构
1.邻接矩阵
因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一 个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系
注意:
- 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一 定是对称的,第i行(列)元素之后就是顶点i的出(入)度
- 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个 顶点不通,则使用无穷大代替
- 用邻接矩阵存储图的有点是能够快速知道两个顶点是否连通,缺陷是如果顶点比较多,边比 较少时,矩阵中存储了大量的0成为系数矩阵,比较浪费空间,并且要求两个节点之间的路 径不是很好求
namespace matrix
{template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>class Graph{typedef Graph<V, W, MAX_W, Direction> Self;public://图的创建//1.IO输入->不方便测试,oj中更适合//2.图结构关系写到文件,读取文件//3.手动添加边Graph() = default;Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; ++i){_vertexs.push_back(a[i]);_indexMap[a[i]] = i;}_matrix.resize(n);for (size_t i = 0; i < _matrix.size(); ++i){_matrix[i].resize(n, MAX_W);}}size_t GetVertexIndex(const V& v){auto it = _indexMap.find(v);if (it != _indexMap.end()){return it->second;}else{//assert(false);throw invalid_argument("顶点不存在");return -1;}}void _AddEdge(size_t srci, size_t dsti, const W& w){_matrix[srci][dsti] = w;//无向图if (Direction == false){_matrix[dsti][srci] = w;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVertexIndex(src);size_t dsti = GetVertexIndex(dst);_AddEdge(srci, dsti, w);}void Print(){//顶点for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;//矩阵//横下标cout << " ";for (size_t i = 0; i < _matrix.size(); ++i){//cout << i << " ";printf("%4d", i);}cout << endl;for (size_t i = 0; i < _matrix.size(); ++i){cout << i << " ";//竖下标for (size_t j = 0; j < _matrix[i].size(); ++j){//cout << _matrix[i][j] << " ";if (_matrix[i][j] == MAX_W){//cout << "* ";printf("%4c", '*');}else{//cout << _matrix[i][j] << " ";printf("%4d", _matrix[i][j]);}}cout << endl;}cout << endl;}private:vector<V> _vertexs; //顶点集合map<V, int> _indexMap; //顶点映射下标vector<vector<W>> _matrix; //邻接矩阵};
}
void TestGraph1()
{Graph<char, int> g("0123", 4);//Graph<char, int, true> g("0123", 4);g.AddEdge('0', '1', 1);g.AddEdge('0', '3', 4);g.AddEdge('1', '3', 2);g.AddEdge('1', '2', 9);g.AddEdge('2', '3', 8);g.AddEdge('2', '1', 5);g.AddEdge('2', '0', 3);g.AddEdge('3', '2', 6);g.Print();
}
邻接矩阵总结:
- 邻接矩阵存储方式非常适合稠密图
- 邻接矩阵O(1)判断两个顶点的连接关系并取到权值
- 相对而言不适合查找一个顶点连接所有边----O(N)
2.邻接表
邻接表:使用数组表示顶点的集合,使用链表表示边的关系
1.无向图邻接表存储
注意:无向图中同一条边在邻接表中出现了两次。如果想知道顶点vi的度,只需要知道顶点vi边链表集合中结点的数目即可
2.有向图邻接表存储
注意:有向图中每条边在邻接表中只出现一次,与顶点vi对应的邻接表所含结点的个数,就是该顶点的出度,也称出度表,要得到vi顶点的入度,必须检测其他所有顶点对应的边链表,看有多少边顶点的dst取值是i
namespace link_table
{template<class W>struct Edge{//int _srci;int _dsti; //目标点的下标W _w; //权值Edge<W>* _next;Edge(int dsti, const W& w) :_dsti(dsti), _w(w), _next(nullptr){ }};template<class V, class W, bool Direction = false>class Graph{typedef Edge<W> Edge;public:Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; ++i){_vertexs.push_back(a[i]);_indexMap[a[i]] = i;}_tables.resize(n, nullptr);}size_t GetVertexIndex(const V& v){auto it = _indexMap.find(v);if (it != _indexMap.end()){return it->second;}else{//assert(false);throw invalid_argument("顶点不存在");return -1;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVertexIndex(src);size_t dsti = GetVertexIndex(dst);Edge* eg = new Edge(dsti, w);eg->_next = _tables[srci];_tables[srci] = eg;if (Direction == false){Edge* eg = new Edge(srci, w);eg->_next = _tables[dsti];_tables[dsti] = eg;}}void Print(){//顶点for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;for (size_t i = 0; i < _tables.size(); ++i){cout << _vertexs[i] << "[" << i << "]->";Edge* cur = _tables[i];while (cur){cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";cur = cur->_next;}cout << "nullptr" << endl;}}private:vector<V> _vertexs; //顶点集合map<V, int> _indexMap; //顶点映射下标vector<Edge*> _tables; //邻接表};
}
void TestGraph2()
{string a[] = { "张三", "李四", "王五", "赵六" };//Graph<string, int, true> g1(a, 4);Graph<string, int> g1(a, 4);g1.AddEdge("张三", "李四", 100);g1.AddEdge("张三", "王五", 200);g1.AddEdge("王五", "赵六", 30);g1.Print();
}
邻接表总结:
- 适合存储稀疏图
- 适合查找一个顶点连接出去的边
- 不适合确定两个顶点是否相连及权值
三.图的遍历
1.图的广度优先遍历
void BFS(const V& src)
{size_t srci = GetVertexIndex(src);//队列和标记数组queue<int> q;vector<bool> visited(_vertexs.size(), false);q.push(srci);visited[srci] = true;int levelSize = 1;size_t n = _vertexs.size();while (!q.empty()){//一层一层出for (int i = 0; i < levelSize; ++i){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << " ";//把front顶点的邻接顶点入队列for (size_t i = 0; i < n; ++i){if (_matrix[front][i] != MAX_W){if (visited[i] == false){q.push(i);visited[i] = true;}}}}cout << endl;levelSize = q.size();}cout << endl;
}
void TestBDFS()
{string a[] = { "张三", "李四", "王五", "赵六", "周七" };Graph<string, int> g1(a, sizeof(a) / sizeof(string));g1.AddEdge("张三", "李四", 100);g1.AddEdge("张三", "王五", 200);g1.AddEdge("王五", "赵六", 30);g1.AddEdge("王五", "周七", 30);g1.Print();g1.BFS("张三");
}
2.图的深度优先遍历
void _DFS(size_t srci, vector<bool>& visited)
{cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;//找一个和srci相邻的没有访问过的点,去深度遍历for (size_t i = 0; i < _vertexs.size(); ++i){if (_matrix[srci][i] != MAX_W && visited[i] == false){_DFS(i, visited);}}
}void DFS(const V& src)
{size_t srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);
}
void TestBDFS()
{string a[] = { "张三", "李四", "王五", "赵六", "周七" };Graph<string, int> g1(a, sizeof(a) / sizeof(string));g1.AddEdge("张三", "李四", 100);g1.AddEdge("张三", "王五", 200);g1.AddEdge("王五", "赵六", 30);g1.AddEdge("王五", "周七", 30);g1.Print();g1.DFS("张三");
}
四.最小生成树
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路
若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。因此构造最小生成树的准则有三条:
- 只能使用图中的边来构造最小生成树
- 只能使用恰好n-1条边来连接图中的n个顶点
- 选用的n-1条边不能构成回路
1.Kruskal算法
Kruskal算法(克鲁斯卡尔算法)任给一个有n个顶点的连通网络N={V,E}, 首先构造一个由这n个顶点组成、不含任何边的图G={V,NULL},其中每个顶点自成一个连通分量, 其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中。如此重复,直到所有顶点在同一个连通分量上为止
核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树
struct Edge
{size_t _srci;size_t _dsti;W _w;Edge(size_t srci, size_t dsti, const W& w) :_srci(srci), _dsti(dsti), _w(w){ }bool operator>(const Edge& e) const{return _w > e._w;}
};W Kruskal(Self& minTree)
{size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}priority_queue<Edge, vector<Edge>, greater<Edge>> minque;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (i < j && _matrix[i][j] != MAX_W){minque.push(Edge(i, j, _matrix[i][j]));}}}cout << "Kruskal开始选边:" << endl;//选出n-1条边int size = 0;W totalW = W();UnionFindSet ufs(n);while (!minque.empty()){Edge min = minque.top();minque.pop();if (!ufs.InSet(min._srci, min._dsti)){cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti);++size;totalW += min._w;}else{cout << "构成环";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}}cout << endl;if (size == n - 1){return totalW;}else{return W();}
}
void TestGraphMinTree()
{const char str[] = "abcdefghi";Graph<char, int> g(str, strlen(str));g.AddEdge('a', 'b', 4);g.AddEdge('a', 'h', 8);g.AddEdge('a', 'h', 9);g.AddEdge('b', 'c', 8);g.AddEdge('b', 'h', 11);g.AddEdge('c', 'i', 2);g.AddEdge('c', 'f', 4);g.AddEdge('c', 'd', 7);g.AddEdge('d', 'f', 14);g.AddEdge('d', 'e', 9);g.AddEdge('e', 'f', 10);g.AddEdge('f', 'g', 2);g.AddEdge('g', 'h', 1);g.AddEdge('g', 'i', 6);g.AddEdge('h', 'i', 7);Graph<char, int> kminTree;cout << "Kruskal:" << g.Kruskal(kminTree) << endl;kminTree.Print();cout << endl;
}
2.Prim算法
Prim算法(普里姆算法)
W Prim(Self& minTree, const W& src)
{size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}vector<bool> X(n, false);vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;//从X到Y集合相连接的边中选出值最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minq;//将srci连接的边添加到队列中for (size_t i = 0; i < n; ++i){if (_matrix[srci][i] != MAX_W){minq.push(Edge(srci, i, _matrix[srci][i]));}}cout << "Prim开始选边:" << endl;int size = 0;W totalW = W();while (!minq.empty()){Edge min = minq.top();minq.pop();if (X[min._dsti]){cout << "构成环";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}else{minTree._AddEdge(min._srci, min._dsti, min._w);cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;X[min._dsti] = true;Y[min._dsti] = false;++size;totalW += min._w;if (size == n - 1)break;for (size_t i = 0; i < n; ++i){if (_matrix[min._dsti][i] != MAX_W && Y[i]){minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}}cout << endl;if (size == n - 1){return totalW;}else{return W();}
}
void TestGraphMinTree()
{const char str[] = "abcdefghi";Graph<char, int> g(str, strlen(str));g.AddEdge('a', 'b', 4);g.AddEdge('a', 'h', 8);g.AddEdge('a', 'h', 9);g.AddEdge('b', 'c', 8);g.AddEdge('b', 'h', 11);g.AddEdge('c', 'i', 2);g.AddEdge('c', 'f', 4);g.AddEdge('c', 'd', 7);g.AddEdge('d', 'f', 14);g.AddEdge('d', 'e', 9);g.AddEdge('e', 'f', 10);g.AddEdge('f', 'g', 2);g.AddEdge('g', 'h', 1);g.AddEdge('g', 'i', 6);g.AddEdge('h', 'i', 7);Graph<char, int> pminTree;cout << "Prim:" << g.Prim(pminTree, 'a') << endl;pminTree.Print();
}
五.最短路径
最短路径问题:从在带权有向图G中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小
1.单源最短路径--Dijkstra算法
单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图中每个结点v ∈ V v∈Vv∈V的最短路径。Dijkstra算法就适用于解决带权重的有向图上的单源最短路径问题,同时算法要求图中所有边的权重非负。一般在求解最短路径的时候都是已知一个起点和一个终点,所以使用Dijkstra算法求解过后也就得到了所需起点到终点的最短路径
针对一个带权有向图G,将所有结点分为两组S和Q,S是已经确定最短路径的结点集合,在初始时为空(初始时就可以将源节点s放入,毕竟源节点到自己的代价是0),Q 为其余未确定最短路径 的结点集合,每次从Q 中找出一个起点到该结点代价最小的结点u ,将u 从Q 中移出,并放入S中,对u的每一个相邻结点v 进行松弛操作。松弛即对每一个相邻结点v ,判断源节点s到结点u 的代价与u 到v 的代价之和是否比原来s 到v 的代价更小,若代价比原来小则要将s 到v 的代价更新 为s 到u 与u 到v 的代价之和,否则维持原样。如此一直循环直至集合Q 为空,即所有节点都已经 查找过一遍并确定了最短路径,至于一些起点到达不了的结点在算法循环后其代价仍为初始设定 的值,不发生变化。Dijkstra算法每次都是选择V-S中最小的路径节点来进行更新,并加入S中,所 以该算法使用的是贪心策略
Dijkstra算法(迪杰斯特拉算法)存在的问题是不支持图中带负权路径,如果带有负权路径,则可能会找不到一些路径的最短路径
//时间复杂度:O(N^2),空间复杂度:O(N)
void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
{size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();dist.resize(n, MAX_W);pPath.resize(n, -1);dist[srci] = 0;pPath[srci] = srci;//已经确定最短路径的顶点集合vector<bool> S(n, false);for (size_t j = 0; j < n; ++j){//选出最短路径顶点且不在S更新其他路径int u = 0;W min = MAX_W;for (size_t i = 0; i < n; ++i){if (S[i] == false && dist[i] < min){u = i;min = dist[i];}}S[u] = true;//松弛更新for (size_t v = 0; v < n; ++v){if (S[v] == false && _matrix[u][v] != MAX_W && dist[u] + _matrix[u][v] < dist[v]){dist[v] = dist[u] + _matrix[u][v];pPath[v] = u;}}}
}
void TestGraphDijkstra()
{const char* str = "syztx";Graph<char, int, INT_MAX, true> g(str, strlen(str));g.AddEdge('s', 't', 10);g.AddEdge('s', 'y', 5);g.AddEdge('y', 't', 3);g.AddEdge('y', 'x', 9);g.AddEdge('y', 'z', 2);g.AddEdge('z', 's', 7);g.AddEdge('z', 'x', 6);g.AddEdge('t', 'y', 2);g.AddEdge('t', 'x', 1);g.AddEdge('x', 'z', 4);vector<int> dist;vector<int> parentPath;g.Dijkstra('s', dist, parentPath);g.PrintShortPath('s', dist, parentPath);
}
2.单源最短路径--Bellman-Ford算法
Dijkstra算法只能用来解决正权图的单源最短路径问题,但有些题目会出现负权图。这时这个算法就不能帮助我们解决问题了,而bellman—ford算法(贝尔曼-福特算法)可以解决负权图的单源最短路径问题。它的优点是可以解决有负权边的单源最短路径问题,而且可以用来判断是否有负权回路。它也有明显的缺点,它的时间复杂度 O(N*E) (N是点数,E是边数)普遍是要高于Dijkstra算法O(N²)的。像这里 如果我们使用邻接矩阵实现,那么遍历所有边的数量的时间复杂度就是O(N^3),这里也可以看出来Bellman-Ford就是一种暴力求解更新
//时间复杂度:O(N^3),空间复杂度:O(N)
bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
{size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();// vector<W> dist,记录srci-其他顶点最短路径权值数组dist.resize(n, MAX_W);// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组pPath.resize(n, -1);// 先更新srci->srci为最小值dist[srci] = W();for (size_t k = 0; k < n; ++k){bool updata = false;cout << "更新第" << k << "轮:" << endl;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){updata = true;cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;dist[j] = dist[i] + _matrix[i][j];pPath[j] = i;}}}//如果这个轮次没有更新出最短路径,后续轮次就不需要再走if (updata == false)break;}//如果还能更新就是带负权回路for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){return false;}}}return true;
}
void TestGraphBellmanFord()
{const char* str = "syztx";Graph<char, int, INT_MAX, true> g(str, strlen(str));g.AddEdge('s', 't', 6);g.AddEdge('s', 'y', 7);g.AddEdge('y', 'z', 9);g.AddEdge('y', 'x', -3);//g.AddEdge('y', 's', 1);//新增g.AddEdge('z', 's', 2);g.AddEdge('z', 'x', 7);g.AddEdge('t', 'x', 5);g.AddEdge('t', 'y', 8);//g.AddEdge('t', 'y', -8);//更改g.AddEdge('t', 'z', -4);g.AddEdge('x', 't', -2);vector<int> dist;vector<int> parentPath;if (g.BellmanFord('s', dist, parentPath)){g.PrintShortPath('s', dist, parentPath);}else{cout << "存在负权回路" << endl;}
}
3.多源最短路径--Floyd-Warshall算法
Floyd-Warshall算法(弗洛伊德算法)是解决任意两点间的最短路径的一种算法
Floyd算法考虑的是一条最短路径的中间节点,即简单路径p={v1,v2,…,vn}上除v1和vn的任意节点
设k是p的一个中间节点,那么从i到j的最短路径p就被分成i到k和k到j的两段最短路径p1,p2。p1 是从i到k且中间节点属于{1,2,…,k-1}取得的一条最短路径。p2是从k到j且中间节点属于{1, 2,…,k-1}取得的一条最短路径
Floyd算法本质是三维动态规划,D[i][j][k]表示从点i到点j只经过0到k个点最短路径,然后建立 起转移方程,然后通过空间优化,优化掉最后一维度,变成一个最短路径的迭代算法,最后即得到所有点的最短路径
void FloydWarShall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
{size_t n = _vertexs.size();vvDist.resize(n);vvpPath.resize(n);for (size_t i = 0; i < n; ++i){vvDist[i].resize(n, MAX_W);vvpPath[i].resize(n, -1);}for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W){vvDist[i][j] = _matrix[i][j];vvpPath[i][j] = i;}if (i == j){vvDist[i][j] = 0;}}}//最短路径的更新for (size_t k = 0; k < n; ++k){for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W && vvDist[i][k] + vvDist[k][j] < vvDist[i][j]){vvDist[i][j] = vvDist[i][k] + vvDist[k][j];vvpPath[i][j] = vvpPath[k][j];}}}}
}
void TestFloydWarShall()
{const char* str = "12345";Graph<char, int, INT_MAX, true> g(str, strlen(str));g.AddEdge('1', '2', 3);g.AddEdge('1', '3', 8);g.AddEdge('1', '5', -4);g.AddEdge('2', '4', 1);g.AddEdge('2', '5', 7);g.AddEdge('3', '2', 4);g.AddEdge('4', '1', 2);g.AddEdge('4', '3', -5);g.AddEdge('5', '4', 6);vector<vector<int>> vvDist;vector<vector<int>> vvParentPath;g.FloydWarShall(vvDist, vvParentPath);// 打印任意两点之间的最短路径for (size_t i = 0; i < strlen(str); ++i){g.PrintShortPath(str[i], vvDist[i], vvParentPath[i]);cout << endl;}
}
六.整体实现
1.UnionFindSet.h
#pragma once
#include<vector>class UnionFindSet
{
public:UnionFindSet(size_t n) :_ufs(n, -1){ }int FindRoot(int x){int root = x;while (_ufs[root] >= 0)root = _ufs[root];//路径压缩while (_ufs[x] >= 0){int parent = _ufs[x];_ufs[x] = root;x = parent;}return root;}bool Union(int x1, int x2){int root1 = FindRoot(x1);int root2 = FindRoot(x2);if (root1 == root2)//x1和x2本来就在一个集合中return false;//数据量小的向大的合并if (abs(_ufs[root1]) < abs(_ufs[root2]))swap(root1, root2);_ufs[root1] += _ufs[root2];_ufs[root2] = root1;return true;}bool InSet(int x1, int x2){return FindRoot(x1) == FindRoot(x2);}size_t SetSize(){size_t n = 0;for (auto& e : _ufs){if (e < 0)++n;}return n;}
private:vector<int> _ufs;
};void TestUoionFindSet()
{UnionFindSet ufs(10);ufs.Union(8, 9);ufs.Union(7, 8);ufs.Union(6, 7);ufs.Union(5, 6);ufs.Union(4, 5);
}
2.Graph.h
#pragma once
#include<vector>
#include<string>
#include<map>
#include<queue>
#include<set>
#include<functional>namespace matrix
{template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>class Graph{typedef Graph<V, W, MAX_W, Direction> Self;public://图的创建//1.IO输入->不方便测试,oj中更适合//2.图结构关系写到文件,读取文件//3.手动添加边Graph() = default;Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; ++i){_vertexs.push_back(a[i]);_indexMap[a[i]] = i;}_matrix.resize(n);for (size_t i = 0; i < _matrix.size(); ++i){_matrix[i].resize(n, MAX_W);}}size_t GetVertexIndex(const V& v){auto it = _indexMap.find(v);if (it != _indexMap.end()){return it->second;}else{//assert(false);throw invalid_argument("顶点不存在");return -1;}}void _AddEdge(size_t srci, size_t dsti, const W& w){_matrix[srci][dsti] = w;//无向图if (Direction == false){_matrix[dsti][srci] = w;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVertexIndex(src);size_t dsti = GetVertexIndex(dst);_AddEdge(srci, dsti, w);}void Print(){//顶点for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;//矩阵//横下标cout << " ";for (size_t i = 0; i < _matrix.size(); ++i){//cout << i << " ";printf("%4d", i);}cout << endl;for (size_t i = 0; i < _matrix.size(); ++i){cout << i << " ";//竖下标for (size_t j = 0; j < _matrix[i].size(); ++j){//cout << _matrix[i][j] << " ";if (_matrix[i][j] == MAX_W){//cout << "* ";printf("%4c", '*');}else{//cout << _matrix[i][j] << " ";printf("%4d", _matrix[i][j]);}}cout << endl;}cout << endl;}void BFS(const V& src){size_t srci = GetVertexIndex(src);//队列和标记数组queue<int> q;vector<bool> visited(_vertexs.size(), false);q.push(srci);visited[srci] = true;int levelSize = 1;size_t n = _vertexs.size();while (!q.empty()){//一层一层出for (int i = 0; i < levelSize; ++i){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << " ";//把front顶点的邻接顶点入队列for (size_t i = 0; i < n; ++i){if (_matrix[front][i] != MAX_W){if (visited[i] == false){q.push(i);visited[i] = true;}}}}cout << endl;levelSize = q.size();}cout << endl;}void _DFS(size_t srci, vector<bool>& visited){cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;//找一个和srci相邻的没有访问过的点,去深度遍历for (size_t i = 0; i < _vertexs.size(); ++i){if (_matrix[srci][i] != MAX_W && visited[i] == false){_DFS(i, visited);}}}void DFS(const V& src){size_t srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);}struct Edge{size_t _srci;size_t _dsti;W _w;Edge(size_t srci, size_t dsti, const W& w) :_srci(srci), _dsti(dsti), _w(w){ }bool operator>(const Edge& e) const{return _w > e._w;}};W Kruskal(Self& minTree){size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}priority_queue<Edge, vector<Edge>, greater<Edge>> minque;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (i < j && _matrix[i][j] != MAX_W){minque.push(Edge(i, j, _matrix[i][j]));}}}cout << "Kruskal开始选边:" << endl;//选出n-1条边int size = 0;W totalW = W();UnionFindSet ufs(n);while (!minque.empty()){Edge min = minque.top();minque.pop();if (!ufs.InSet(min._srci, min._dsti)){cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti);++size;totalW += min._w;}else{cout << "构成环";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}}cout << endl;if (size == n - 1){return totalW;}else{return W();}}W Prim(Self& minTree, const W& src){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}vector<bool> X(n, false);vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;//从X到Y集合相连接的边中选出值最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minq;//将srci连接的边添加到队列中for (size_t i = 0; i < n; ++i){if (_matrix[srci][i] != MAX_W){minq.push(Edge(srci, i, _matrix[srci][i]));}}cout << "Prim开始选边:" << endl;int size = 0;W totalW = W();while (!minq.empty()){Edge min = minq.top();minq.pop();if (X[min._dsti]){cout << "构成环";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}else{minTree._AddEdge(min._srci, min._dsti, min._w);cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;X[min._dsti] = true;Y[min._dsti] = false;++size;totalW += min._w;if (size == n - 1)break;for (size_t i = 0; i < n; ++i){if (_matrix[min._dsti][i] != MAX_W && Y[i]){minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}}cout << endl;if (size == n - 1){return totalW;}else{return W();}}void PrintShortPath(const V& src, const vector<W>& dist, const vector<int>& pPath){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();for (size_t i = 0; i < n; ++i){if (i != srci){//找出i顶点的路径vector<int> path;size_t parenti = i;while (parenti != srci){path.push_back(parenti);parenti = pPath[parenti];}path.push_back(srci);reverse(path.begin(), path.end());for (auto index : path){cout << _vertexs[index] << "->";}cout << "权值和: " << dist[i] << endl;}}}//时间复杂度:O(N^2),空间复杂度:O(N)void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();dist.resize(n, MAX_W);pPath.resize(n, -1);dist[srci] = 0;pPath[srci] = srci;//已经确定最短路径的顶点集合vector<bool> S(n, false);for (size_t j = 0; j < n; ++j){//选出最短路径顶点且不在S更新其他路径int u = 0;W min = MAX_W;for (size_t i = 0; i < n; ++i){if (S[i] == false && dist[i] < min){u = i;min = dist[i];}}S[u] = true;//松弛更新for (size_t v = 0; v < n; ++v){if (S[v] == false && _matrix[u][v] != MAX_W && dist[u] + _matrix[u][v] < dist[v]){dist[v] = dist[u] + _matrix[u][v];pPath[v] = u;}}}}//时间复杂度:O(N^3),空间复杂度:O(N)bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();// vector<W> dist,记录srci-其他顶点最短路径权值数组dist.resize(n, MAX_W);// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组pPath.resize(n, -1);// 先更新srci->srci为最小值dist[srci] = W();for (size_t k = 0; k < n; ++k){bool updata = false;cout << "更新第" << k << "轮:" << endl;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){updata = true;cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;dist[j] = dist[i] + _matrix[i][j];pPath[j] = i;}}}//如果这个轮次没有更新出最短路径,后续轮次就不需要再走if (updata == false)break;}//如果还能更新就是带负权回路for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){return false;}}}return true;}void FloydWarShall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath){size_t n = _vertexs.size();vvDist.resize(n);vvpPath.resize(n);for (size_t i = 0; i < n; ++i){vvDist[i].resize(n, MAX_W);vvpPath[i].resize(n, -1);}for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W){vvDist[i][j] = _matrix[i][j];vvpPath[i][j] = i;}if (i == j){vvDist[i][j] = 0;}}}//最短路径的更新for (size_t k = 0; k < n; ++k){for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W && vvDist[i][k] + vvDist[k][j] < vvDist[i][j]){vvDist[i][j] = vvDist[i][k] + vvDist[k][j];vvpPath[i][j] = vvpPath[k][j];}}}}}private:vector<V> _vertexs; //顶点集合map<V, int> _indexMap; //顶点映射下标vector<vector<W>> _matrix; //邻接矩阵};void TestGraph1(){Graph<char, int> g("0123", 4);//Graph<char, int, true> g("0123", 4);g.AddEdge('0', '1', 1);g.AddEdge('0', '3', 4);g.AddEdge('1', '3', 2);g.AddEdge('1', '2', 9);g.AddEdge('2', '3', 8);g.AddEdge('2', '1', 5);g.AddEdge('2', '0', 3);g.AddEdge('3', '2', 6);g.Print();}void TestBDFS(){string a[] = { "张三", "李四", "王五", "赵六", "周七" };Graph<string, int> g1(a, sizeof(a) / sizeof(string));g1.AddEdge("张三", "李四", 100);g1.AddEdge("张三", "王五", 200);g1.AddEdge("王五", "赵六", 30);g1.AddEdge("王五", "周七", 30);g1.Print();g1.BFS("张三");g1.DFS("张三");}void TestGraphMinTree(){const char str[] = "abcdefghi";Graph<char, int> g(str, strlen(str));g.AddEdge('a', 'b', 4);g.AddEdge('a', 'h', 8);g.AddEdge('a', 'h', 9);g.AddEdge('b', 'c', 8);g.AddEdge('b', 'h', 11);g.AddEdge('c', 'i', 2);g.AddEdge('c', 'f', 4);g.AddEdge('c', 'd', 7);g.AddEdge('d', 'f', 14);g.AddEdge('d', 'e', 9);g.AddEdge('e', 'f', 10);g.AddEdge('f', 'g', 2);g.AddEdge('g', 'h', 1);g.AddEdge('g', 'i', 6);g.AddEdge('h', 'i', 7);Graph<char, int> kminTree;cout << "Kruskal:" << g.Kruskal(kminTree) << endl;kminTree.Print();cout << endl;Graph<char, int> pminTree;cout << "Prim:" << g.Prim(pminTree, 'a') << endl;pminTree.Print();}void TestGraphDijkstra(){const char* str = "syztx";Graph<char, int, INT_MAX, true> g(str, strlen(str));g.AddEdge('s', 't', 10);g.AddEdge('s', 'y', 5);g.AddEdge('y', 't', 3);g.AddEdge('y', 'x', 9);g.AddEdge('y', 'z', 2);g.AddEdge('z', 's', 7);g.AddEdge('z', 'x', 6);g.AddEdge('t', 'y', 2);g.AddEdge('t', 'x', 1);g.AddEdge('x', 'z', 4);vector<int> dist;vector<int> parentPath;g.Dijkstra('s', dist, parentPath);g.PrintShortPath('s', dist, parentPath);}void TestGraphBellmanFord(){const char* str = "syztx";Graph<char, int, INT_MAX, true> g(str, strlen(str));g.AddEdge('s', 't', 6);g.AddEdge('s', 'y', 7);g.AddEdge('y', 'z', 9);g.AddEdge('y', 'x', -3);//g.AddEdge('y', 's', 1);//新增g.AddEdge('z', 's', 2);g.AddEdge('z', 'x', 7);g.AddEdge('t', 'x', 5);g.AddEdge('t', 'y', 8);//g.AddEdge('t', 'y', -8);//更改g.AddEdge('t', 'z', -4);g.AddEdge('x', 't', -2);vector<int> dist;vector<int> parentPath;if (g.BellmanFord('s', dist, parentPath)){g.PrintShortPath('s', dist, parentPath);}else{cout << "存在负权回路" << endl;}}void TestFloydWarShall(){const char* str = "12345";Graph<char, int, INT_MAX, true> g(str, strlen(str));g.AddEdge('1', '2', 3);g.AddEdge('1', '3', 8);g.AddEdge('1', '5', -4);g.AddEdge('2', '4', 1);g.AddEdge('2', '5', 7);g.AddEdge('3', '2', 4);g.AddEdge('4', '1', 2);g.AddEdge('4', '3', -5);g.AddEdge('5', '4', 6);vector<vector<int>> vvDist;vector<vector<int>> vvParentPath;g.FloydWarShall(vvDist, vvParentPath);// 打印任意两点之间的最短路径for (size_t i = 0; i < strlen(str); ++i){g.PrintShortPath(str[i], vvDist[i], vvParentPath[i]);cout << endl;}}
}namespace link_table
{template<class W>struct Edge{//int _srci;int _dsti; //目标点的下标W _w; //权值Edge<W>* _next;Edge(int dsti, const W& w) :_dsti(dsti), _w(w), _next(nullptr){ }};template<class V, class W, bool Direction = false>class Graph{typedef Edge<W> Edge;public:Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; ++i){_vertexs.push_back(a[i]);_indexMap[a[i]] = i;}_tables.resize(n, nullptr);}size_t GetVertexIndex(const V& v){auto it = _indexMap.find(v);if (it != _indexMap.end()){return it->second;}else{//assert(false);throw invalid_argument("顶点不存在");return -1;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVertexIndex(src);size_t dsti = GetVertexIndex(dst);Edge* eg = new Edge(dsti, w);eg->_next = _tables[srci];_tables[srci] = eg;if (Direction == false){Edge* eg = new Edge(srci, w);eg->_next = _tables[dsti];_tables[dsti] = eg;}}void Print(){//顶点for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;for (size_t i = 0; i < _tables.size(); ++i){cout << _vertexs[i] << "[" << i << "]->";Edge* cur = _tables[i];while (cur){cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";cur = cur->_next;}cout << "nullptr" << endl;}}private:vector<V> _vertexs; //顶点集合map<V, int> _indexMap; //顶点映射下标vector<Edge*> _tables; //邻接表};void TestGraph2(){string a[] = { "张三", "李四", "王五", "赵六" };//Graph<string, int, true> g1(a, 4);Graph<string, int> g1(a, 4);g1.AddEdge("张三", "李四", 100);g1.AddEdge("张三", "王五", 200);g1.AddEdge("王五", "赵六", 30);g1.Print();}
}
3.test.cpp
#include<iostream>
using namespace std;
#include"UnionFindSet.h"
#include"Graph.h"int main()
{//TestUoionFindSet();//matrix::TestGraph1();//matrix::TestBDFS();//matrix::TestGraphMinTree();//matrix::TestGraphDijkstra();//matrix::TestGraphBellmanFord();matrix::TestFloydWarShall();//link_table::TestGraph2();return 0;
}
相关文章:

数据结构——图(遍历,最小生成树,最短路径)
目录 一.图的基本概念 二.图的存储结构 1.邻接矩阵 2.邻接表 三.图的遍历 1.图的广度优先遍历 2.图的深度优先遍历 四.最小生成树 1.Kruskal算法 2.Prim算法 五.最短路径 1.单源最短路径--Dijkstra算法 2.单源最短路径--Bellman-Ford算法 3.多源最短路径--Floyd-…...

002-NoSQL介绍
目录 一、NoSQL 简介 二、NoSQL 特性 三、NoSQL 的工作原理 四、NoSQL 有哪些类型 五、NoSQL数据库与关系型数据库的区别 六、常见的非关系型数据库NOSQL分类 一、NoSQL 简介 NoSQL,全称为Not Only SQL,指的是非关系型的数据库。NoSQL有时也称作Not Only SQL的缩写,是…...

qt-everywher交叉编译e-src-5.15.2
简化配置的方式: 你完全可以通过直接配置 安装目录、编译链 和 目标架构 来完成交叉编译,而不需要修改 mkspecs 配置。以下是如何通过简化配置来进行交叉编译 Qt 的步骤。 准备交叉编译工具链 首先,确保你已经安装了交叉编译工具链ÿ…...

4.STM32通信接口之SPI通信(含源码)---硬件SPI与W25Q64存储模块通信实战《精讲》
开胃简介 根据上一节对STM32的SPI介绍!本节将进行硬件SPI的实现,片选用软件实现!跟着Whappy走起!W25Q64的驱动层,我们不需要更改,仅仅需要更改一下SPI的协议,即:由软件实现改成硬件…...

生信技能63 - 构建gnomAD变异位点的SQLite查询数据库
将数据量巨大的gnomAD数据库,通过SQLite数据库寻找gnomAD中存在的各种变异注释信息(如等位基因计数,深度,次要等位基因频率等),查询300.000个变量的查询需要大约40秒,通过染色体编号+位置+REF+ALT即可进行快速查询。 1. gnomAD变异注释VCF文件字段 gnomAD VCF各版本包…...

0x0118消息 WM_SYSTIMER
0x0118消息就是WM_SYSTIMER 编辑框出现输入光标时,产生的消息. 0x0118 would be the undocumented WM_SYSTIMER, which appears to be used for caret blinks. 0x0118是一个undocument 消息, 微软没有记录。 但在一些库的源码中可以看到,比如ATL的库文…...

【机器学习】机器学习的基本分类-无监督学习(Unsupervised Learning)
无监督学习(Unsupervised Learning) 无监督学习是一种机器学习方法,主要用于没有标签的数据集。其目标是从数据中挖掘出潜在的结构和模式。常见的无监督学习任务包括 聚类、降维、密度估计 和 异常检测。 1. 无监督学习的核心目标 1.1 聚类…...

[代码随想录09]字符串2的总结
前言 处理字符串主要是有思路,同时总结方法。 题目链接 151. 反转字符串中的单词 - 力扣(LeetCode) 55. 右旋字符串(第八期模拟笔试) 一、翻转字符串里的单词 这个题目的主要思路,代码采用从后往前遍历字…...

java注解(一):什么是注解?什么是元注解?如何自定义注解?注解的原理是什么?
目录 1、什么是注解? 2、什么是元注解 1、Target() 2、Retention() 3、Documented 4、Inherited 3、如何自定义注解以解使用 4、注解的原理 本篇文章主要是介绍注解的概念、原理,以及通过代码演示4种元注解、如何自定义注解。通过反编译的形式进…...

AD20 原理图库更新到原理图
一 点击工具,从库更新。快捷键TL 二 点击完成 三 执行变更,最后点击关闭...

.NET用C#导入Excel数据到数据库
将Excel文件中的数据导入到数据库中不仅能够提升数据处理的效率和准确性,还能极大地促进数据分析和决策制定的过程。尤其在企业级应用中,Excel作为数据输入和初步整理的工具非常普遍,但其功能对于复杂查询、大规模数据管理和跨部门的数据共享…...

小身躯大能量-供热系统通过EtherCAT转Profinet网关进行升级
在现代工业自动化领域,通信技术的进步对于提高系统效率、稳定性和可靠性起着至关重要的作用。EtherCAT(Ethernet for Control Automation Technology)作为一种实时以太网解决方案,因其高性能及成本效益高等特点,在众多…...

Android11.0系统关闭App所有通知
通过广播接收方式,根据包名关闭App所有通知。 packages/apps/Settings$ git diff diff --git a/AndroidManifest.xml b/AndroidManifest.xml index d4c54c6ed8..1ce7d4136f 100644 --- a/AndroidManifest.xmlb/AndroidManifest.xml-106,6 106,7 <uses-permissio…...

# issue 8 TCP内部原理和UDP编程
TCP 通信三大步骤: 1 三次握手建立连接; 2 开始通信,进行数据交换; 3 四次挥手断开连接; 一、TCP内部原理--三次握手 【第一次握手】套接字A∶"你好,套接字B。我这儿有数据要传给你,建立连接吧。" 【第二次…...

力扣100题--移动零
给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0]示例 2: 输入: nums [0] 输出: […...

Spring 邮件发送
Spring 邮件发送 1. 主要内容(了解) 2. JavaMail 概述(了解) JavaMail,顾名思义,提供给开发者处理电⼦邮件相关的编程接⼝。JavaMail 是由 Sun 定义的⼀套收发电⼦邮件的 API,它可以⽅便地执⾏⼀…...

利用 360 安全卫士极速版关闭电脑开机自启动软件教程
在使用电脑的过程中,过多的开机自启动软件会严重拖慢电脑的开机速度,影响我们的使用体验。本教程中简鹿办公将详细介绍如何使用 360 安全卫士极速版关闭电脑开机自启动软件,让您的电脑开机更加迅速流畅。 一、打开 360 安全卫士极速版 在电…...

楼房销售系统
文末获取源码和万字论文,制作不易,感谢点赞支持。 毕 业 设 计(论 文) 题目:楼房销售系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储…...

UML箭线图的理解和实践
在软件开发的世界里,UML(统一建模语言)作为一种标准化的建模语言,扮演着举足轻重的角色。UML类图更是软件开发设计和架构过程中的核心工具,它不仅能帮助开发者明确系统中的类及其关系,还能为后续的代码实现…...

Qt入门8——Qt文件
1. Qt文件概述 文件操作是应用程序必不可少的部分。Qt作为⼀个通用开发库,提供了跨平台的文件操作能力。Qt 提供了很多关于文件的类,通过这些类能够对文件系统进行操作,如文件读写、文件信息获取、文件复制或重命名等。 2. 输入输出设备类 在…...

鸿翼受邀出席2024海峡两岸档案暨缩微学术交流会
近日,由中国档案学会、中国文献影像技术协会共同主办,中华档案暨资讯微缩管理学会参加的2024年海峡两岸档案暨缩微学术交流会在乌鲁木齐召开。鸿翼联合创始人兼CTO罗永秀受邀出席本次交流会并作主题分享。 自1992年以来,该学术交流会已连续举…...

支持win7系统的onnxruntime
在win7 X86系统上,使用了onnxruntime.dll库做AI识别,但是在win7上运行报0xc0000005的错误 经查,ONNX Runtime从v1.15.0版本开始不再支持Windows 7及其之前的操作系统,即便尝试重新编译源代码亦无法在这些老系统上运行,…...

如何利用内链策略提升网站的整体权重?
内链是谷歌SEO中常常被低估的部分,实际上,合理的内链策略不仅能帮助提升页面间的关联性,还可以增强网站的整体权重。通过正确的内链布局,用户可以更流畅地浏览你的网站,谷歌爬虫也能更快地抓取到更多页面,有…...

鸿蒙分享(二):引入zrouter路由跳转+封装
码仓库:https://gitee.com/linguanzhong/share_harmonyos 鸿蒙api:12 鸿蒙第三方库地址:OpenHarmony三方库中心仓 zrouter地址:OpenHarmony三方库中心仓 1.引入zrouter 1.打开终端界面:输入 ohpm install hzw/zrouter 2.在项目…...

【计算机网络】实验11:边界网关协议BGP
实验11 边界网关协议BGP 一、实验目的 本次实验旨在验证边界网关协议(BGP)的实际作用,并深入学习在路由器上配置和使用BGP协议的方法。通过实验,我将探索BGP在不同自治系统之间的路由选择和信息交换的功能,理解其在互…...

leetcode 1853 转换日期格式(postgresql)
需求 表: Days ----------------- | Column Name | Type | ----------------- | day | date | ----------------- day 是这个表的主键。 给定一个Days表,请你编写SQL查询语句,将Days表中的每一个日期转化为"day_name, month_name day, year"…...

掌握时间,从`datetime`开始
文章目录 掌握时间,从datetime开始第一部分:背景介绍第二部分:datetime库是什么?第三部分:如何安装这个库?第四部分:简单库函数使用方法1. 获取当前日期和时间2. 创建特定的日期3. 计算两个日期…...

剖析千益畅行,共享旅游-卡,合规运营与技术赋能双驱下的旅游新篇
在数字化浪潮席卷各行各业的当下,旅游产业与共享经济模式深度融合,催生出旅游卡这类新兴产品。然而,市场乱象丛生,诸多打着 “共享” 幌子的旅游卡弊病百出,让从业者与消费者都深陷困扰。今天,咱们聚焦技术…...

集合框架(2)List
Collection的子接口:List、Set 1、List接口 鉴于Java中数组用来存储数据的局限性,我们通常使用java.util.List替代数组List集合类中元素有序、且可重复,集合中的每个元素都有其对应的顺序索引。JDK API中List接口的实现类常用的有ÿ…...

【子查询】.NET开源 ORM 框架 SqlSugar 系列
.NET开源 ORM 框架 SqlSugar 系列 【开篇】.NET开源 ORM 框架 SqlSugar 系列【入门必看】.NET开源 ORM 框架 SqlSugar 系列【实体配置】.NET开源 ORM 框架 SqlSugar 系列【Db First】.NET开源 ORM 框架 SqlSugar 系列【Code First】.NET开源 ORM 框架 SqlSugar 系列【数据事务…...