分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测
分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测
目录
- 分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果






基本描述
1.Matlab实现PSO-PNN粒子群优化概率神经网络多特征分类预测,运行环境Matlab2018b及以上;
2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容;
3.优化参数为PNN的散布值;
4.data为数据集,main为主程序,分类效果如下:
注:程序和数据放在一个文件夹。
概率神经网络(Probabilistic Neural Network,PNN)是一种基于统计原理的人工神经网络模型,它融合了径向基神经网络与经典的概率密度估计原理的优点,在模式分类方面表现出显著的优势。以下是对概率神经网络的详细介绍:
基本原理
概率神经网络以贝叶斯决策规则为核心思想,即错误分类的期望风险最小。它使用高斯函数进行概率密度估计,通过计算输入特征向量与训练集中各个模式的匹配程度(相似度),实现模式分类。其判别边界接近于贝叶斯最佳判定面,因此分类效果与最优贝叶斯分类器等价。
网络结构
概率神经网络一般包含以下四层:
输入层:负责将特征向量传入网络,输入层神经元的个数是样本特征的个数。
模式层(也称隐含层):通过连接权值与输入层连接,计算输入特征向量与训练集中各个模式的匹配程度,并将其距离送入高斯函数得到模式层的输出。模式层神经元的个数是输入样本矢量的个数,即有多少个样本,该层就有多少个神经元。
求和层(也称竞争层):负责将各个类的模式层单元连接起来,这一层的神经元个数是样本的类别数目。
输出层:负责输出求和层中得分最高的那一类,即最终的分类结果。
主要特点
训练简单、收敛快:概率神经网络的学习过程简单,训练速度快,非常适合实时处理。
分类准确、容错性好:概率神经网络在模式分类方面表现优异,其判别边界接近于贝叶斯最佳判定面,因此分类准确率高,且具有较强的容错性。
易于硬件实现:概率神经网络各层神经元的数目比较固定,因此易于硬件实现。
扩充性能好:增加或减少类别模式时,概率神经网络不需要重新进行长时间的训练学习,具有良好的扩充性能。

注:程序和数据放在一个文件夹。
程序设计
- 完整程序和数据私信博主回复分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1; % 特征维度
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%% 划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本mid_size = size(mid_res, 1); % 得到不同类别样本个数mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数end%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测
分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测 目录 分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现PSO-PNN粒子群优化概率神经网络多特征分类预测,运行环境Matlab2018b及以…...
AcWing 3416. 时间显示
文章目录 前言代码思路 前言 这种我最担心的就是一些语法格式忘掉了。还有 int ,long long 的数据范围我记得不是很清楚,印象中 int 是 20 亿左右,long long 不行就得用数组来存这个数字了。int,long long数据类型及数值范围。好像没记错,记…...
【软考速通笔记】系统架构设计师⑲——专业英语
文章目录 一、前言二、常用名词三、架构风格四、非功能需求五、应用架构六、软件架构重用 一、前言 笔记目录大纲请查阅:【软考速通笔记】系统架构设计师——导读 二、常用名词 名词翻译architecture架构system系统design设计requirements需求components组件constr…...
java注解(二):注解的解析以及应用场景、用注解和反射模拟junit框架代码演示
目录 1、什么是注解的解析? 2、解析注解的案例 1、自定义一个注解 2、在类和方法上使用自己定义的注解 3、解析注解 3、模拟Junit框架案例 1、自定义一个MyTest注解 2、定义一个测试类,使用自定义的注解 3、写一个启动类 本文章主要讲解什么是注…...
C# 命名空间(Namespace)
文章目录 前言一、命名空间的定义与使用基础(一)定义语法与规则(二)调用命名空间内元素 二、using 关键字三、嵌套命名空间 前言 命名空间(Namespace)在于提供一种清晰、高效的方式,将一组名称与…...
几个Linux系统安装体验: centos7系统服务版
本文介绍CentOS7服务版本的安装。 前言 当前国产操作系统版本众多,但根据笔者多年的实践经验得到的认知,最好能抓住底层逻辑,上下打通打透,拉齐表现和本质,就能在纷扰版本中看得清清楚楚,明明白白…...
ViT学习笔记(一) 基本的原理和框架结构
原论文地址:https://arxiv.org/pdf/2010.11929 首先大致通读一下原论文,这是很有必要的,但不必完全读懂,因为会有高手给我们解读,比如: 【Transformer系列】深入浅出理解ViT(Vision Transformer)模型-CSD…...
fedora下Jetbrains系列IDE窗口中文乱码解决方法
可以看到窗口右部分的中文内容为小方块。 进入 Settings - Appearance & Behavior - Appearance - Use custom font : Note Sans Mono CJK SC ,设置后如下图:...
nginx根据报文里字段转发至不同地址
nginx接收到post请求.请求报文里是一个json字符串,字符串里有个字段id。 根据id不同,转发到不同地址。 如果idaaa,转发到www.aaa.com.test 如果idbbb,转发到www.bbb.com.test 如何配置,请提供一个nginx.conf 要在 Nginx 中根据 POST 请求的 JSON 负载中的…...
使用 html/css 实现 educoder 顶部导航栏的步骤和方法
要使用HTML和CSS实现一个类似于Educoder网站的顶部导航栏,我们可以设计一个响应式、简洁且功能齐全的导航栏。Educoder的顶部导航栏通常包括网站的logo、主要导航项(如首页、课程、讨论等)、以及用户操作按钮(如登录、注册等&…...
EasyExcel导出列表
通过easyexcel导出列表数据 根据列表内容自适应宽高。 文件名冲突,修改文件名递增设置。 依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>${easyexcel.version}</version&…...
【unity小技巧】分享vscode如何开启unity断点调试模式,并进行unity断点调试(2024年最新的方法,实测有效)
文章目录 前言一、前置条件1、已安装Visual Studio Code,并且unity首选项>外部工具>外部脚本编辑器选择为Visual Studio Code [版本号],2、在Visual Studio Code扩展中搜索Unity,并安装3、同时注意这个插件下面的描述,需要根…...
【JavaScript】Object.keys() 和 Object.values() 的使用示例和相关的简单应用
值是数字的情况: let n 124; Object.keys(n) // [] Object.values(n) // []值是字符串的情况: let s "abc"; Object.keys(s) // [0, 1, 2] Object.values(s) // [a, b, c]值是数组的情况:(常用) let ar…...
SwiftUI 列表(或 Form)子项中的 Picker 引起导航无法跳转的原因及解决
概述 在 SwiftUI 的界面布局中,列表(List)和 Form 是我们秃头码农们司空见惯的选择。不过大家是否知道:如果将 Picker 之类的视图嵌入到列表或 Form 的子项中会导致导航操作无法被触发。 从上图可以看到:当在 List 的…...
基于ZYNQ-7000系列的FPGA学习笔记8——呼吸灯
基于ZYNQ-7000系列的FPGA学习笔记8——呼吸灯 1. 实验要求2. 功能分析3. 模块设计4. 波形图5.代码编写6. 代码仿真7. 添加约束文件并分析综合 上期内容,我们学习了按键控制蜂鸣器,这一期我们开始学习呼吸灯 1. 实验要求 控制领航者核心板上的led&#x…...
探索 Python 应用的分层依赖:解决 UOS 环境中的 libvirt-python 安装问题
探索 Python 应用的分层依赖:解决 UOS 环境中的 libvirt-python 安装问题 背景Python 版本升级 问题描述原因分析与解决方案 Python 应用的分层依赖:安装与部署的视角libvirt-python的分层依赖尝试的解决方案 使用编译好的 .whl 文件"嫁接"整个…...
OpenCV-平滑图像
二维卷积(图像滤波) 与一维信号一样,图像也可以通过各种低通滤波器(LPF)、高通滤波器(HPF)等进行过滤。LPF 有助于消除噪音、模糊图像等。HPF 滤波器有助于在图像中找到边缘。 opencv 提供了函数 **cv.filter2D()**&…...
解决跨域问题方案
跨域问题在前后端分离架构下尤为常见,是每个 Web 开发者都会遇到的核心问题。本文将通过原理解析、场景剖析、解决方案详解以及最佳实践等多个维度,帮助开发者全面理解并有效应对跨域问题。 目录 **一、跨域的本质****1. 同源策略****2. 同源策略的限制范…...
云计算介绍_3(计算虚拟化——cpu虚拟化、内存虚拟化、io虚拟化、常见集群策略、华为FC)
计算虚拟化 1.计算虚拟化介绍1.1 计算虚拟化 分类(cpu虚拟化、内存虚拟化、IO虚拟化)1.2 cpu虚拟化1.3 内存虚拟化1.4 IO虚拟化1.5 常见的集群的策略1.6 华为FC 1.计算虚拟化介绍 1.1 计算虚拟化 分类(cpu虚拟化、内存虚拟化、IO虚拟化&#…...
软件工程复习记录
基本概念 软件工程三要素:方法、工具、过程 软件开发方法:软件开发所遵循的办法和步骤,以保证所得到的运行系统和支持的文档满足质量要求。 软件开发过程管理 软件生命周期:可行性研究、需求分析、概要设计、详细设计、编码、测…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
