当前位置: 首页 > news >正文

Implicit style-content separation using lora

1.Introduction

图像风格化,这个任务涉及根据某些风格参考改编图像的风格,这些参考可以是基于文本或基于图像的,同时保持其内容不变,内容指的是图像的语义信息和结构,而风格通常指的是视觉特征和模式,例如颜色和纹理。这是一个有挑战的任务,因为风格和内容之间的强关联导致风格转化和内容保留之间存在固有的权衡。此外有些人物也需要在图像中分离风格和内容。

在模型中嵌入视觉-语义先验,常见的技术包括微调预训练的文本到图像模型,以适应新的风格或内容,然而微调模型常常受到风格转化和内容保留之间固有权衡的影响,因为他们容易过拟合。与这些方法不同,我们通过按图像分离风格和组件来统一风格和内容的学习。这种分离是通过不易过拟合的b-lora来实现的。lora通常是通过微调基本模型来进行图像风格化,以参考一组图像,这些图像可以代表所需的风格或者内容。在sdxl中,两个特定的transformer块可以用来分离输入图像的内容和风格,并在生成图像中

相关文章:

Implicit style-content separation using lora

1.Introduction 图像风格化,这个任务涉及根据某些风格参考改编图像的风格,这些参考可以是基于文本或基于图像的,同时保持其内容不变,内容指的是图像的语义信息和结构,而风格通常指的是视觉特征和模式,例如颜色和纹理。这是一个有挑战的任务,因为风格和内容之间的强关联…...

ROS[aruco_ros+easy_handeye]手眼标定(眼在手外+UR10e+realsense-d435i)

参考链接: https://zhuanlan.zhihu.com/p/576861119 https://blog.csdn.net/qq_32618327/article/details/120730198 本次在Docker中使用 打印Aruco码:https://chev.me/arucogen/ 选择Dictionary为 Original ArUco(aruco_ros默认这个,如果…...

第九篇:k8s 通过helm发布应用

什么是helm? Helm 是 Kubernetes 的包管理器。Helm 是查找、分享和使用软件构建 Kubernetes 的最优方式。 在红帽系的Linux中我们使用yum来管理RPM包,类似的,在K8s中我们可以使用helm来管理资源对象(Deployment、Service、Ingress…...

dataTable

在 C# 中,DataTable 是 .NET Framework 中用于处理数据表格的一个类,属于 System.Data 命名空间。它是一种内存中表示数据表的结构,通常用于临时存储和操作数据,类似于数据库中的表。DataTable 的主要特点是行列结构,其…...

json+Tomact项目报错怎么办?

在响应请求的时候,如果http响应没有指定响应数据的content-type,浏览器就不知道按照什么格式解析响应体的数据,因为浏览器只知道怎样解析http的行和头,再从头里获取响应体的字节长度和类型,按照你给的长度去截流&#…...

Flume——sink连接Hive的参数配置(属性参数)

目录 配置文件官网属性参数例子 配置文件官网 可以参考官网的说明 属性参数 属性名默认值说明type无(必须指定)组件类型名称,必须是"hive"hive.metastore无(必须指定)元数据仓库地址,例如&…...

Netty面试内容整理-Netty 的应用场景

Netty 是一个高性能、异步的事件驱动网络框架,广泛应用于各种需要高并发、高吞吐量的网络通信场景。以下是 Netty 的常见应用场景: RPC 框架 ● 应用描述: ○ 远程过程调用(RPC)框架用于跨网络调用远程服务,就像调用本地方法一样。 ○...

波特图方法

在电路设计中,波特图为最常用的稳定性余量判断方法,波特图的根源是如何来的,却鲜有人知。 本章节串联了奈奎斯特和波特图的渊源,给出了其对应关系和波特图相应的稳定性余量。 理论贯通,不在于精确绘…...

服务器数据恢复—硬盘掉线导致热备盘同步失败的RAID5阵列数据恢复案例

服务器存储数据恢复环境: 华为S5300存储中有12块FC硬盘,其中11块硬盘作为数据盘组建了一组RAID5阵列,剩下的1块硬盘作为热备盘使用。基于RAID的LUN分配给linux操作系统使用,存放的数据主要是Oracle数据库。 服务器存储故障&#…...

在Ubuntu中运行和管理AppImage

文章目录 什么是AppImage?如何在Ubuntu中运行AppImage?如何管理AppImage?安装AppImageLauncher如何添加AppImage到系统?如何从系统中移除AppImage? 总结 什么是AppImage? AppImage是一种将应用程序打包为单…...

如何查看电脑的屏幕刷新率?

1、按一下键盘的 win i 键,打开如下界面,选择【系统】: 2、选择【屏幕】-【高级显示设置】 如下位置,显示屏幕的刷新率:60Hz 如果可以更改,则选择更高的刷新率,有助于电脑使用起来界面更加流…...

浏览器数据存储方法深度剖析:LocalStorage、IndexedDB、Cookies、OPFS 与 WASM - SQLite

在当今的 Web 开发领域,选择合适的浏览器数据存储方法对于构建高效、功能丰富的应用程序至关重要。随着 Web 应用的不断演进,从早期的静态 HTML 页面到如今复杂的单页应用和本地优先应用,数据存储需求也日益多样化。本文将深入探讨 LocalStor…...

面向金融场景的大模型 RAG 检索增强解决方案

概述 在现代信息检索领域,检索增强生成(Retrieval-Augmented Generation, RAG)模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。在特定场景下,例如金融等领域,用户通…...

经典蓝牙(BT/EDR)蓝牙配对与连接

经典蓝牙的连接过程包括跳频,扫描,配置交换等过程。对ACL链路以及sco的连接过程也做详细的分析。 1. 为什么不配对便无法建立连接? 任何无线通信技术都存在被监听和破解的可能,蓝牙SIG为了保证蓝牙通信的安全性,采用…...

Flask: flask框架是如何实现非阻塞并发的

写在前面:Flask框架是通过多线程/多进程+阻塞的socket实现非阻塞,其本质是基于python的源库socketserver实现的 前言 认识WSGI协议 认识Werkzeug flask是如何实现非阻塞的 本文使用的flask框架为最新的1.1.1版本,所有代码基于python3运行 一:前言 使用过flask或者其他web框…...

JAVA |日常开发中连接Oracle数据库详解

JAVA |日常开发中连接Oracle数据库详解 前言一、Oracle 数据库概述1.1 定义与特点1.2 适用场景 二、Java 连接 Oracle 数据库的准备工作2.1 添加 Oracle JDBC 驱动依赖2.2 了解连接信息 三、建立数据库连接3.1 代码示例(使用服务名)3.2 步骤解…...

头歌 进程管理之二(wait、exec、system的使用)

第1关:进程等待 任务描述 通过上一个实训的学习,我们学会了使用fork创建子进程,在使用fork创建子进程的时候,子进程和父进程的执行顺序是无法预知的。本关我们将介绍如何使得fork创建出来的子进程先执行,随后父进程再…...

详解日志格式配置:XML 与 Spring Boot 配置文件格式

详解日志格式配置:XML 与 Spring Boot 配置文件格式 日志是现代应用程序中不可或缺的一部分,通过定制化日志格式和颜色,开发人员可以更方便地调试和监控应用。本文将深入讲解如何在 XML 配置文件 和 Spring Boot 配置文件 中设置日志格式&am…...

JDK21新特性

目录 虚拟线程(JEP 444): 顺序集合(JEP 431): 字符串模板(JEP 430): 模式匹配的增强(JEP 440、441以及443): 结构化并发和作用域值…...

SqlDataAdapter

SqlDataAdapter 是 .NET Framework 和 .NET Core 中提供的一个数据适配器类,属于 System.Data.SqlClient 命名空间(或在 .NET 6 中属于 Microsoft.Data.SqlClient 命名空间)。它的作用是充当数据源(如 SQL Server 数据库&#xff…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色&#xf…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...