Numpy基础练习
import numpy as np
1.创建一个长度为10的一维全为0的ndarray对象,然后让第5个元素等于1
n = np.zeros(10,dtype=np.int32)
n[4] = 1
2.创建一个元素从10到49的ndarray对象
n = np.arrange(10,50)
3.将第2题的所有元素位置反转
n[::-1]
- 使用np.random.random创建一个10*10的ndarray对象,并打印出最大最小元素
n = np.random.random(size=(10,10))
display(n,np.max(n),np.min(n))
5.创建一个10*10的ndarray数组,且矩阵边界全为1,里面全为0
方法1
n = np.zeros((10,10),dtype=np,int16)
n[[0,-1]] = 1 # 第0行和最后1行为1
n[:,[0,-1]] = 1 # 第0列和最后一列为1
----
方法2
n = np.ones((10,10),dtype=np.int16)
n[1:-1,1:-1] = 0
6.创建一个每一行都是0到4的5*5矩阵
l = [0,1,2,3,4]
l*5
n = np.array(l*5).reshape((5,5))
7.创建一个范围在(0,1)之间的长度为12的等差数列
n = np.linspace(0,1,12)
8.创建一个长度为10的随机数组并排序
n = np.random.randint(0,10,10)
n.sort()
9.创建一个长度为10的随机数组并将最大值替换为0
n = np.random.randint(0,10,size=10)
//最大值可能有多个
max1 = np.max(n)
np.argwhere(n==max1) # 多个最大值对应的下标
# 变为一维
# 所有最大值对应的索引
max_indexs = np.argwhere(n==max1).reshape(-1)
# -1我们就不用管它几个数字 如果你知道是3你可以写3
n[max_indexs] = 0
10.给定一个4维矩阵,如何得到最后两维的和
n = np.random.randint(0,10,size=(2,3,4,5))
n.sum(axis=(2,3))
# 第一个维度是axis=0
# 第二个维度是axis=1
# 第三个维度是axis=2
# 第四个维度是axis=3
11.给定数组[1,2,3,4,5],如何得到在这个数组每个元素之间插入3个0后的新数组?
n = np.arrange(1,6)
n2 = np.zeros(17,dtype=np.int16)
n2[::4] = n
12.给定一个二维矩阵,如何交换其中两行的元素?
n = np.random.randint(0,10,size=(4,4))
display(n)
# 可以利用索引交换行
n2 = n[[1,0,2,3]]
display(n2)
13.创建一个100000长度的随机数组,使用两种方法对其求三次方,并比较所用时间
n = np.random.randint(0,10,size=100000)
%timeit np.power(n,3)
%timeit n**3
14.创建一个53随机矩阵和一个32随机矩阵,求矩阵积
n1 = np.random.randint(0,100,size=(5,3))
n2 = np.random.randint(0,100,size=(3,2))
np.dot(n1,n2)
15.矩阵的每一行的元素都减去该行的平均值
n = np.random.randint(0,10,size=(3,4))
display(n)
n2 = n.mean(axis=1).reshape(3,1)
n-n2

n = np.zeros((8,8),dtype=int)
n[::2,1::2]=1
n[1::2,::2]=1

n = np.random.randint(0,100,size=(5,5))
min1 = n.min()
max1 = n.max()
# 归一化: 0-1之间
(n-min1)/(max1-min1)相关文章:
Numpy基础练习
import numpy as np 1.创建一个长度为10的一维全为0的ndarray对象,然后让第5个元素等于1 n np.zeros(10,dtypenp.int32) n[4] 12.创建一个元素从10到49的ndarray对象 n np.arrange(10,50)3.将第2题的所有元素位置反转 n[::-1]使用np.random.random创建一个10*10的ndarray对象…...
一番赏小程序定制开发,打造全新抽赏体验平台
随着盲盒的热潮来袭,作为传统的潮玩方式一番赏也再次受到了大家的关注,市场热度不断上升! 一番赏能够让玩家百分百中奖,商品种类丰富、收藏价值高,拥有各种IP,从而吸引着各个圈子的粉丝玩家,用…...
【前端】将vue的方法挂载到window上供全局使用,也方便跟原生js做交互
【前端】将vue的方法挂载到window上供全局使用,也方便跟原生js做交互 <template><div><el-button click"start">调用方法</el-button></div> </template> <script> // import { JScallbackProc } from ./JScal…...
Oracle查询优化:高效实现仅查询前10条记录的方法与实践
在 Oracle 中,实现仅查询前10条记录的四种方法 1. 使用 ROWNUM 查询 ROWNUM 是 Oracle 中的伪列,用于限制返回的行数。 SELECT * FROM table_name WHERE condition AND ROWNUM < 10;condition:查询条件。ROWNUM < 10:限制…...
go语言编译问题
go编译 goproxy地址 阿里云 https://mirrors.aliyun.com/goproxy/七牛云 https://goproxy.cn/开源版 https://goproxy.io/nexus社区 https://gonexus.dev/启用 Go Modules 功能 go env -w GO111MODULEon配置 GOPROXY 环境变量,以下三选一 七牛 CDN go env -w …...
mobi文件转成pdf
将 MOBI 文件转换为 PDF 格式通常涉及两个步骤: 解析 MOBI 文件:需要提取 MOBI 文件的内容(文本、图片等)。将提取的内容转换为 PDF:将 MOBI 文件的内容渲染到 PDF 格式。 可用工具 kindleunpack 或 mobi࿱…...
MobaXterm解决中文显示乱码问题
1 问题 打开MobaXterm时,会显示中文乱码。 2 解决方法 右键点击会话,在弹出菜单中选择“编辑会话”,如下: 选择终端字体设置,如下: 字符集换成ISO-8859-1,如下: 网上有说用…...
西门子 SINAMICS G120 变频器借助 ProfiNet 转 EtherCAT 实现与汇川 H5U 通讯实例
一. 案例背景 随着智能制造理念的推进,设备之间的协同工作变得越来越重要。例如,在机器人自动化焊接生产线中,电机驱动的焊接机器人需要与其他设备协同工作,这就要求负责电机控制的变频器和控制整个生产线流程的PLC能…...
流媒体之linux下离线部署FFmpeg 和 SRS
前言 用户对网络做了限制,只能访问指定的网址,和没网没啥区别,导致无法连接外网,无法获取安装包,还有一些编译需要的开源工具 用户需要用平台查看库房的海康摄像头实时监控,只能在库房里一台纯净的ubantu…...
NOBLEROYCE罗慕路斯门窗 以精工匠造开启私属人生
公元前753年罗马建立,其创建者为罗慕路斯。以狼孩的传奇形象成为古罗马精神象征的罗慕路斯,不仅是罗马的第一任国王,还创建了罗马最初的政治制度,罗马的名字也是源于这位伟大的奠基人。NOBLEROYCE罗慕路斯,致敬这位人类…...
【算法day8】字符串:反转
主播今天脑子不好用,先写两题吧~ 题目引用 反转字符串中的单词右旋字符串 1.反转字符串 给你一个字符串 s ,请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且…...
【C++进阶】第二节:多态
1、多态的概念 1.1 概念 多态的概念:通俗来说,就是多种形态。具体点就是去完成某个行为,当不同的对象去完成时会产生出不同的状态。 2、多态的定义及实现 2.1 多态的构成条件 多态是在不同继承关系的类对象,去调用同一函数&a…...
梯度下降法以及 Python 实现
文章目录 1. 引言2. 梯度法3. 例子4. 代码实现5. 讨论 — 学习率 η \eta η5.1 当 η \eta η 设置过大5.2 当 η \eta η 设置过小 参考 1. 引言 梯度下降法,可以根据微分求出的斜率计算函数的最小值。 在人工智能中,经常被应用于学习算法。 2. 梯…...
Postman cURL命令导入导出
你是否曾为在Postman和终端之间切换、整理请求而抓狂?其实,Postman支持与cURL命令的无缝互通,通过导入导出,极大提升效率。用好这个功能,分分钟让接口测试更高效! Postman如何快速导入cURL命令?…...
Java 在Json对象字符串中查找和提取特定的数据
1、在处理JSON数据时,需要提出个别字段的值,通过正则表达式提取特定的数据 public static void main(String[] args) {//定义多个JSON对象字符串类型,假设每个对象有a,b,c 字段String strJson "{\"a\":1.23,\"b\"…...
synchronized的特性
1.互斥 对于synchronized修饰的方法及代码块不同线程想同时进行访问就会互斥。 就比如synchronized修饰代码块时,一个线程进入该代码块就会进行“加锁”。 退出代码块时会进行“解锁”。 当其他线程想要访问被加锁的代码块时,就会阻塞等待。 阻塞等待…...
领域泛化与领域自适应
领域泛化(Domain Generalization)和领域适应(Domain Adaptation)是机器学习领域中处理不同数据分布场景下模型训练与应用的两种策略,领域泛化在泛化到目标领域时不需要进行调整,而领域自适应在适应到目标领…...
使用aspx,完成一个转发http的post请求功能的api接口,url中增加目标地址参数,传递自定义header参数
使用aspx,完成一个转发http的post请求功能的api接口,url中增加目标地址参数,传递自定义header参数 首先,简单实现一下,如何在ASPX页面中实现这个功能实现代码说明:注意事项: 然后进阶࿰…...
实际车辆行驶轨迹与预设路线偏离检测的Java实现
准备工作 本项目依赖于两个关键库:JTS Topology Suite(简称JTS),用于几何对象创建和空间分析;以及GeoTools,用于处理坐标转换和其他地理信息任务。确保开发环境中已经包含了这两个库,并且正确配…...
从excel数据导入到sqlsever遇到的问题
1、格式问题时间格式,excel中将日期列改为日期未生效,改完后,必须手动单击这个单元格才能生效,那不可能一个一个去双击。解决方案如下 2、导入之后表字段格式问题,数据类型的用navicat导入之后默认是nvarchar类型的&a…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
FOPLP vs CoWoS
以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...
React、Git、计网、发展趋势等内容——前端面试宝典(字节、小红书和美团)
React React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍,详细解释 用户: React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍&#x…...
