教学案例:k相同的一次函数的图像关系
【题目】
请在同一个平面直角坐标系中画出一次函数y=2x, y=2x+4的图象,并观察图象,你发现这两个图形有什么位置关系?为什么?
【答案】
图象是相互平行的两条直线
【解析】
一、教学活动形式
这里设计的教学活动形式是“画图 → 观察→ 猜想 → 验证 → 证明”。
1.画图
通过描点连线,画出两个一次函数的图像。
2.观察
你俩关系太明显,一眼就能看出。
3.猜想
这俩函数有啥共同之处,对了,一次项的系数相同。那么是不是K相同的一次函数都平行呢?让孩子们的思维飞一会儿,大家伙儿一起研究研究,讨论讨论。
4.验证
再画一个试试,来个y=2x-4看看。不行就再画两个,看看是不是都有这个规律?
5.证明
之前都只是“看着”平行,你还要用演绎推理的方式证明这两个函数平行。
注意验证和证明的区别:验证是通过举例子、做实验的方法来检验结论;证明则是运用已知定理、公理,通过逻辑推理的方式,从已知条件出发推导出结论。
(1)个例证明
如图所示,函数y=2x+4与坐标轴交于A、B两点,故A点纵坐标为0、B点横坐标为0,代入函数可求得A、B的坐标分别是A(-2,0), B(0,4)。在直线y=2x上取纵坐标为4的点C,由点C向x轴画垂线,垂足为D。纵坐标为4(CD=4),代入函数,可求得横坐标为2(0D=2)。则△AOB≌△OD C(SAS)得∠BAO=∠COD,从而有AB∥CD。

然而,这只是证明了y=2x, y=2x+4这两个函数平行,并不能由此得出结论“一次项系数k相同的一次函数相互平行”。
(2)命题证明
要再进一步引导学生证明上述命题成立,即一般形式的y=kx,y=kx+b具有平行关系。
其实证明思路和前面完全一样,只需用字母代替前面的数即可(代数法)。
同样可以求出函数y=kx+b与坐标轴交点的坐标为(-b/k, 0),(0, b),在函数y=kx上取纵坐标为b的点,该点的坐标为(b/k, b)。于是,我们同样能通过证明两个三角形相等的形式证明两直线平行。
二、总结反思
这道题的证明首先要画辅助线构造三角形,再通过证明三角形全等得出同位角相等,进而证明两直线平行。
问题来了,我们是怎么想到解题思路的呢?
一切都要从问题出发。
要证明两直线平行,只有通过角的关系证明。只有三种渠道:同位角相等、内错角相等、同旁内角互补。
你要明白,这三种方法其实只是一种。因为后两种都是由第一种推导出来的。
第一种是最直接、最直观的证明方法,应该是我们首选的证明方法。
第二种次之,第三种因为不能通过角相等证明,因此很少用。
无论哪种证明方法,都需要有“截线”(与两条平行线都相交的线,即截断两条线的线)。
画面上正有两条天然截线:X轴、Y轴。
要证明角相等,那全等三角形是不二之选。
你一眼看过去,画面上已有一个三角形,就是y=kx+b与坐标轴构成的那个三角形。

所以自然会想到以y=kx为一条边,再构造一个三角形,与这个三角形相等,于是你想到要画辅助线。
怎么画辅助线呢?看看画面上已有的那个三角形,两条直角边,一条斜边。斜边有了,所以你肯定是要画直角边了。
前面给出的证明方法是画平行于Y轴的辅助线构造三角形,能不能用平行于X轴的辅助线构造全等三角形呢?当然可以!
能不能通过内错角相等证明呢,当然也可以,无非要构造的三角形不同,要画的辅助线不同而已。
最后,总结下证明思路:证明平行←同位角相等←全等三角形←画辅助线构造三角形。
相关文章:
教学案例:k相同的一次函数的图像关系
【题目】 请在同一个平面直角坐标系中画出一次函数y2x, y2x4的图象,并观察图象,你发现这两个图形有什么位置关系?为什么? 【答案】 图象是相互平行的两条直线 【解析】 一、教学活动形式 这里设计的教学活动形式是“画图 →…...
EmoAva:首个大规模、高质量的文本到3D表情映射数据集。
2024-12-03,由哈尔滨工业大学(深圳)的计算机科学系联合澳门大学、新加坡南洋理工大学等机构创建了EmoAva数据集,这是首个大规模、高质量的文本到3D表情映射数据集,对于推动情感丰富的3D头像生成技术的发展具有重要意义…...
Elasticsearch vs 向量数据库:寻找最佳混合检索方案
图片来自Shutterstock上的Bakhtiar Zein 多年来,以Elasticsearch为代表的基于全文检索的搜索方案,一直是搜索和推荐引擎等信息检索系统的默认选择。但传统的全文搜索只能提供基于关键字匹配的精确结果,例如找到包含特殊名词“Python3.9”的文…...
【Flink-scala】DataStream编程模型之水位线
DataStream API编程模型 1.【Flink-Scala】DataStream编程模型之 数据源、数据转换、数据输出 2.【Flink-scala】DataStream编程模型之 窗口的划分-时间概念-窗口计算程序 3.【Flink-scala】DataStream编程模型之 窗口计算-触发器-驱逐器 文章目录 DataStream API编程模型前言…...
Python导入moviepy找不到editor 视频没有声音设置audio_codec参数
moviepy合成视频出错: 问题一:导入moviepy.editor找不到editor,No module named moviepy.editor问题二:合成的视频没有声音 问题一:导入moviepy.editor找不到editor,No module named moviepy.editor from …...
rsync 是一个非常强大的 Linux 工具,常用于文件和目录的同步、备份和传输。
rsync 是一个非常强大的 Linux 工具,常用于文件和目录的同步、备份和传输。它可以高效地同步本地和远程系统上的文件和目录,并且支持增量传输,仅同步发生变化的部分。rsync 支持压缩传输、删除多余文件、排除特定文件等多种功能,是日常运维、备份和迁移数据的重要工具。 一…...
触发器案例详解
目录 一、定义二、类型三、功能与用途四、创建与调用DML触发器格式示例DDL触发器格式示例登录触发器格式示例五、案例案例一:DML触发器 - 记录更新操作的触发器案例二:DML触发器 - 防止非法工资更新的触发器案例三:DDL触发器 - 记录表结构更改的触发器案例四:DDL触发器 - 防…...
jwt 与 sessionid 的区别及应用场景
在现代 Web 应用中,JWT(JSON Web Token)和SessionID是两种常用的用户认证和状态管理机制。本文从两者的原理、区别、优缺点以及适用场景展开分析,结合常见问题提出了最佳实践建议,帮助开发者更好地选择和使用。 JWT与S…...
tomcat和nginx
Tomcat 和 Nginx 都可以部署 Web 应用,但它们的核心功能和适用场景不同,因此在 2024 年生产环境及未来,是否使用 Tomcat 取决于需求和技术架构的特点。 1. Tomcat 的特点与适用场景 Tomcat 是 Java Servlet 容器,主要用来运行基于…...
服务器带宽与数据安全的重要性与作用
服务器带宽指的是服务器与外部网络通信的能力,即服务器发送和接收数据的速率。带宽越大,服务器在同一时间内能够处理的数据量就越多,数据传输的速度和稳定性也就越高。在数字化时代,企业对于数据的依赖程度日益加深,无…...
JSON数据处理
1. JSON注解 Data NoArgsConstructor AllArgsConstructor JsonIgnoreProperties(ignoreUnknowntrue) JSON注解: JsonIgnoreProperties(ignoreUnknowntrue) Hutool 日期格式化: DatePattern DateTimeFormat(pattern "yyyy-MM-dd HH:mm:ss")…...
FSWIND脉动风-风载时程生成器软件原理
大量风的实测资料表明,在风的时程曲线中,瞬时风速包含两个部分:一部分是自振周期一般在 10 分钟以上的平均风,另一部分是周期一般只有几秒左右的脉动风。平均风由于其周期一般比结构的自振周期大,因而考虑其作用性质相…...
搭建高可用负载均衡系统:Nginx 与云服务的最佳实践
搭建高可用负载均衡系统:Nginx 与云服务的最佳实践 引言 在项目开发过程中,我们通常在开发和测试阶段采用单机架构进行开发和测试。这是因为在这个阶段,系统的主要目的是功能实现和验证,单机架构足以满足开发人员的日常需求&…...
对比git命令与TortoiseGit工具,理解git解决冲突的过程
1 引言 此前用TortoiseSvn习惯了,所以,转到git时也同时选择了TortoiseGit工具。 同时,对比了可视化工具和git命令的操作,来深入理解git解决冲突的方式。 2 使用远程仓库替代本地仓库的内容 2.1 TortoiseGit做法 using “MERGE_…...
guava缓存的get方法的回调函数讲解一下
CacheBuilder.newBuilder()//设置缓存初始大小,应该合理设置,后续会扩容.initialCapacity(10)//最大值.maximumSize(100)//并发数设置.concurrencyLevel(5)//缓存过期时间,写入后10分钟过期.expireAfterWrite(600,TimeUnit.SECONDS)//统计缓存…...
React基础知识四 Hooks
什么是hooks? (coderwhy) hooks是react 16.8(2019年)出的新特性。 react有两种形式来创建组件——类式和函数式。在hooks之前类式组件就是react最主流的编程方式。 这个时候,函数式组件是非常鸡肋的,几乎没什么用。因…...
线性代数中的谱分解
一、谱分解的基本原理 谱分解(Spectral Decomposition)是线性代数中的一个重要概念,特别是在研究矩阵的特征值和特征向量时。它指的是将一个矩阵分解为其特征值和特征向量的组合,从而简化矩阵的运算和分析。谱分解通常适用于对称…...
Redis 数据结结构(一)—字符串、哈希表、列表
Redis(版本7.0)的数据结构主要包括字符串(String)、哈希表(Hash)、列表(List)、集合(Set)、有序集合(Sorted Set)、超日志(…...
【Python】用Python和Paramiko实现远程服务器自动化管理
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在现代IT环境中,远程服务器管理已成为运维工作的常态。随着自动化运维的需求不断增加,如何高效地管理远程服务器,提升操作的灵活性和效率…...
PDF处理的创新工具:福昕低代码平台尝鲜
在当今数字化时代,PDF文件的处理和管理变得越来越重要。福昕低代码平台是新发布的一款创新的工具,旨在简化PDF处理和管理的流程。通过这个平台,用户可以通过简单的拖拽界面上的按钮,轻松完成对Cloud API的调用工作流,而…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
