当前位置: 首页 > news >正文

Redis 之持久化

目录

介绍

RDB

RDB生成方式       

自动触发

手动触发 

AOF(append-only file)

Redis 4.0 混合持久化

Redis主从工作原理

总结


介绍

        Redis提供了两个持久化数据的能力,RDB Snapshot 和 AOF(Append Only FIle)日志,RDB快照能够在指定的时间间隔内生成数据快照,而AOF日志则记录了所有的写操作命令。RDB做镜像全量持久化,AOF做增量持久化。

RDB

        RDB全称Redis Database Backup file (Redis数据备份⽂件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。

        当Redis实例故障重启后,从磁盘读取快照⽂件,恢复数据。这样一来即使故障宕机,快照文件也不会丢失,数据的可靠性也就得到了保证。它会在特定的时间点对数据库的全部数据进行快照,这个快照⽂件称为 RDB文件(dump.rdb),默认是保存在当前运⾏⽬录。其中,RDB就是Redis DataBase的缩写,是一个二进制文件。

RDB生成方式       

  • 自动触发

1. 配置文件中满足默认备份配置条件(实际上执行的是bgsave命令)   

save 900 1     #900 秒之内,对数据库进行了至少 1 次修改;save 300 10    #300 秒之内,对数据库进行了至少 10 次修改save 60 10000  #60 秒之内,对数据库进行了至少 10000 次修改
# The filename where to dump the DBdbfilename dump.rdb #默认的rdb文件名dir ./    #指定rdb目录,这里代表的是当前目录

 2. 执行flushall/flushdb命令也会产生dump.rdb文件,只不过生成的是空文件,无意义

 3. 执行shutdown且没有开启 AOF 持久化也会触发 RDB 持久化

 4. 主从复制时,主节点自动触发。

  • 手动触发 

        在客户端手动执行 save/bgsave,会触发 RDB 持久化。save会阻塞当前Redis服务,不推荐使用,bgsave会fork出子线程执行 RDB 持久化,不会阻塞,推荐使用;

        执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程,导致Redis不能处理其他命令,因此线上禁止使用。

命令bgsave执行后,会立刻返回OK,Redis 会fork一个子进程,原来的redis主进程继续执行后续操作,新fork的子进程负责将数据保存到磁盘,然后退出,如下图:

        bgsave开始时会 fork主进程得到⼦进程,⼦进程共享主进程的内存数据。在Linux程序中,fork()会产生一个和父进程完全相同的子进程。 完成 fork 后读取内存数据并写⼊ RDB ⽂件。 fork 采⽤的是 copy-on-write 技术:当主 进程执⾏读操作时,访问共享内存;当主进程执⾏写操作时,则会拷⻉⼀份数据,执⾏写操作。
每次命令执行都会将所有redis内存快照到一个新的rdb文件里,并覆盖原有rdb快照文件。

Copy-on-write 写时复制,多更改条件下,内存被大量复制,重写完成后,数据如何释放?

本质来说,这是一个进程的内存资源管理问题:

  1. 内核提供的写时复制机制避免了大量内存拷贝以及占用过多内存
  2. 子进程fork操作只是拷贝了父进程的页表数据,当fork完成后,对于一个父进程引用的内存页,其引用值从1变成2.
  3.  当父进程进行写操作时,会申请一份新的内存页,并从原内存页copy所有数据,之后父进程就在新的内存页上进行操作。而原内存页就变成了子进程的专属内存页,引用值变成了1
  4. 子进程重写完成并退出后,内核会对资源进行回收,包括占用的内存资源
  5. 回收:对于页表来说,是进程专属,直接清理即可;而关联的内存页会将其引用值减1,如果引用值变成了0,该内存页就会被回收
  6. 也就是复制之前的页(原内存页),变成了子进程的专属页,当子进程结束后就会被回收掉

save与bgsave对比:

AOF(append-only file)

AOF全称为Append Only File(追加⽂件)。Redis处理的每⼀个写命令都会记录在AOF⽂件(读操作不记录) ,可以看做是命令⽇志⽂件。
默认情况下,redis是没有开启AOF的。开启AOF功能需要设置配置:
appendonly yes
开启 AOF 持久化后每执⾏⼀条会更改 Redis 中的数据的命令,Redis 就会将该命令写⼊到 AOF 缓冲区 server.aof_buf 中,然后再写⼊到 AOF ⽂件中 (此时在内核缓存区),最后再根据持久化⽅式( fsync策略)的配置来决定 何时将系统内核缓存区的数据同步到硬盘中的。
AOF 持久化功能的实现分为 5 步:
  1. 命令追加(append) :所有的写命令会追加到 AOF 缓冲区中。
  2. ⽂件写⼊(write) :将 AOF 缓冲区的数据写⼊到 AOF ⽂件中。这⼀步 需要调⽤write函数(系统调⽤),write将数据写⼊到了系统内核缓冲区之 后直接返回了(延迟写)。注意!此时并没有同步到磁盘。
  3. ⽂件同步(fsync) :AOF 缓冲区根据对应的持久化⽅式( fsync 策略) 向硬盘做同步操作。这⼀步需要调⽤ fsync 函数(系统调⽤), fsync 针 对单个⽂件操作,对其进⾏强制硬盘同步,fsync 将阻塞直到写⼊磁盘完 成后返回,保证了数据持久化。
  4. ⽂件重写(rewrite) :随着 AOF ⽂件越来越⼤,需要定期对 AOF ⽂件 进⾏重写,达到压缩的⽬的。
  5.  重启加载(load) :Redis 重启时,可以加载 AOF ⽂件进⾏数据恢复。
这⾥对上⾯提到的 Linux 系统调⽤再做⼀遍解释:
  • write :写⼊系统内核缓冲区之后直接返回(仅仅是写到缓冲区),不会⽴即同步到硬盘。虽然提⾼了效率,但也带来了数据丢失的⻛险。同步硬盘操作通 常依赖于系统调度机制,Linux 内核通常为 30s 同步⼀次,具体值取决于写出 的数据量和 I/O 缓冲区的状态。
  • fsync : fsync⽤于强制刷新系统内核缓冲区(同步到到磁盘),确保写磁盘操作结束才会返回。
在 Redis 的配置⽂件中存在三种不同的 AOF 持久化⽅式( fsync策略),它们分别是:
  • appendfsync always:主线程调⽤ write 执⾏写操作后,后台线程( aof_fsync 线程)⽴即会调⽤ fsync 函数同步 AOF ⽂件(刷盘),fsync 完成后线程返回,这样会严重降低 Redis 的性能

  • appendfsync everysec :主线程调⽤ write 执⾏写操作后⽴即返回,由后台线程( aof_fsync 线程)每秒钟调⽤ fsync 函数(系统调⽤)同步⼀次 AOF ⽂件

  • appendfsync no :主线程调⽤ write 执⾏写操作后⽴即返回,让操作系统决定何时进⾏同步,Linux 下⼀般为 30 秒⼀次

推荐(并且也是默认)的措施为每秒 fsync 一次, 这种 fsync 策略可以兼顾速度和安全性。

AOF重写

AOF文件里可能有太多没用指令,所以AOF会定期根据内存的最新数据生成aof文件

如下两个配置可以控制AOF自动重写频率

auto‐aof‐rewrite‐min‐size 64mb //aof文件至少要达到64M才会自动重写,文件太小恢复速度本来就很快,重写的意义不大
auto‐aof‐rewrite‐percentage 100 //aof文件自上一次重写后文件大小增长了100%则再次触发重写

当然AOF还可以手动重写,进入redis客户端执行命令bgrewriteaof重写AOF

        由于 AOF 重写会进⾏⼤量的写⼊操作,为了避免对 Redis 正常处理命令请求造成影响,Redis 将 AOF 重写程序放到⼦进程⾥执⾏。

        图 1 展示的是 AOFRW 的实现原理。当 AOFRW 被触发执行时,Redis 首先会 fork 一个子进程进行后台重写操作,该操作会将执行 fork 那一刻 Redis 的数据快照全部重写到一个名为 temp-rewriteaof-bg-pid.aof 的临时 AOF 文件中。
        由于重写操作为子进程后台执行,主进程在 AOF 重写期间依然可以正常响应用户命令。因此,为了让子进程最终也能获取重写期间主进程产生的增量变化,主进程除了会将执行的写命令写入 aof_buf,还会写一份到 aof_rewrite_buf 中进行缓存。在子进程重写的后期阶段,主进程会将 aof_rewrite_buf 中累积的数据使用 pipe 发送给子进程,子进程会将这些数据追加到临时 AOF 文件中(详细原理可参考[1])。
        当主进程承接了较大的写入流量时,aof_rewrite_buf 中可能会堆积非常多的数据,导致在重写期间子进程无法将 aof_rewrite_buf 中的数据全部消费完。此时,aof_rewrite_buf 剩余的数据将在重写结束时由主进程进行处理。

        当子进程完成重写操作并退出后,主进程会在 backgroundRewriteDoneHandler中处理后续的事情。首先,将重写期间 aof_rewrite_buf 中未消费完的数据追加到临时 AOF 文件中。其次,当一切准备就绪时,Redis 会使用 rename 操作将临时AOF 文件原子的重命名为 server.aof_filename,此时原来的 AOF 文件会被覆盖。至此,整个 AOFRW 流程结束。

图1:

AOF重写存在的问题

  • 内存开销

        由图 1 可以看到,在 AOFRW 期间,主进程会将 fork 之后的数据变化写进aof_rewrite_buf 中,aof_rewrite_buf 和 aof_buf 中的内容绝大部分都是重复的,因此这将带来额外的内存冗余开销。

  • CPU 开销

        CPU 的开销主要有三个地方,分别解释如下:
                1) 在 AOFRW 期间,主进程需要花费 CPU 时间向 aof_rewrite_buf 写数据,并使用                      eventloop 事件循环向子进程发送 aof_rewrite_buf 中的数据。

                2) 在子进程执行重写操作的后期,会循环读取 pipe 中主进程发送来的增量数据,
                    然后追加写入到临时 AOF 文件。

                3) 在子进程完成重写操作后,主进程会在 backgroundRewriteDoneHandler 中进
                    行收尾工作。其中一个任务就是将在重写期间 aof_rewrite_buf 中没有消费完
                    成的数据写入临时 AOF 文件。如果 aof_rewrite_buf 中遗留的数据很多,这里
                    也将消耗 CPU 时间。

  • 磁盘 IO 开销

        如前文所述,在 AOFRW 期间,主进程除了会将执行过的写命令写到 aof_buf 之外,
还会写一份到 aof_rewrite_buf 中。aof_buf 中的数据最终会被写入到当前使用的旧 AOF 文件中,产生磁盘 IO。同时,aof_rewrite_buf 中的数据也会被写入重写生成的新 AOF 文件中,产生磁盘 IO。因此,同一份数据会产生两次磁盘 IO。

阿⾥ Redis 在最初也遇到了这些AOF的重写问题,在内部经过多次迭代开发,实现了Multi-part AOF 机制来解决,同时也贡献给了社区并随此次 7.0 发布。具体⽅法是采⽤ base(全量数据)+incr(增量数据)独⽴⽂件存储的⽅式。

Multi-part AOF
顾名思义,MP-AOF 就是将原来的单个 AOF 文件拆分成多个 AOF 文件。在 MP-AOF中,我们将 AOF 分为三种类型,分别为:
  • BASE:表示基础 AOF,它一般由子进程通过重写产生,该文件最多只有一个;
  • INCR:表示增量 AOF,它一般会在 AOFRW 开始执行时被创建,该文件可能存在多个;
  • HISTORY:表示历史 AOF,它由 BASE 和 INCR AOF 变化而来,每次 AOFRW 成功完成时,本次 AOFRW 之前对应的 BASE 和 INCR AOF 都将变为 HISTORY,HISTORY 类型的 AOF 会被 Redis 自动删除。
为了管理这些 AOF 文件,我们引入了一个 manifest(清单)文件来跟踪、管理这些AOF。同时,为了便于 AOF 备份和拷贝,我们将所有的 AOF 文件和 manifest 文件放入一个单独的文件目录中,目录名由 appenddirname 配置(Redis7.0 新增配置项)决定。

         图 2 展示的是在 MP-AOF 中执行一次 AOFRW 的大致流程。在开始时我们依然会fork 一个子进程进行重写操作,在主进程中,我们会同时打开一个新的 INCR 类型的 AOF 文件,在子进程重写操作期间,所有的数据变化都会被写入到这个新打开的INCR AOF 中。子进程的重写操作完全是独立的,重写期间不会与主进程进行任何的数据和控制交互,最终重写操作会产生一个 BASE AOF。新生成的 BASE AOF 和新打开的 INCR AOF 就代表了当前时刻 Redis 的全部数据。AOFRW 结束时,主进程会负责更新 manifest 文件,将新生成的 BASE AOF 和 INCR AOF 信息加入进去,并将之前的 BASE AOF 和 INCR AOF 标记为 HISTORY(这些 HISTORY AOF 会被 Redis 异步删除)。一旦 manifest 文件更新完毕,就标志整个 AOFRW 流程结束。
        由图 2 可以看到,我们在 AOFRW 期间不再需要 aof_rewrite_buf,因此去掉了对应的内存消耗。同时,主进程和子进程之间也不再有数据传输和控制交互,因此对应的 CPU 开销也全部去掉。

Redis 4.0 混合持久化

重启 Redis 时,我们很少使用 RDB来恢复内存状态,因为会丢失大量数据。我们通常使用 AOF 日志重放,但是重放 AOF 日志性能相对 RDB来说要慢很多,这样在 Redis 实例很大的情况下,启动需要花费很长的时间。 Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化。
通过如下配置可以开启混合持久化(必须先开启aof):

# aof‐use‐rdb‐preamble yes

 如果开启了混合持久化,AOF在重写时,不再是单纯将内存数据转换为RESP命令写入AOF文件,而是将重写这一刻之前的内存做RDB快照处理,并且将RDB快照内容和增量的AOF修改内存数据的命令存在一起,都写入新的AOF文件,新的文件一开始不叫appendonly.aof,等到重写完新的AOF文件才会进行改名,覆盖原有的AOF文件,完成新旧两个AOF文件的替换。
于是在 Redis 重启的时候,可以先加载 RDB 的内容,然后再重放增量 AOF 日志就可以完全替代之前的AOF 全量文件重放,因此重启效率大幅得到提升。

混合持久化AOF文件结构如下

Redis主从工作原理

Redis主从架构

Redis主从工作原理

如果你为master配置了一个slave,不管这个slave是否是第一次连接上Master,它都会发送一个PSYNC命令给master请求复制数据。

master收到PSYNC命令后,会在后台进行数据持久化通过bgsave生成最新的rdb快照文件,持久化期间,master会继续接收客户端的请求,它会把这些可能修改数据集的请求缓存在内存中。当持久化进行完毕以后,master会把这份rdb文件数据集发送给slave,slave会把接收到的数据进行持久化生成rdb,然后再加载到内存中。然后,master再将之前缓存在内存中的命令发送给slave。

当master与slave之间的连接由于某些原因而断开时,slave能够自动重连Master,如果master收到了多个slave并发连接请求,它只会进行一次持久化,而不是一个连接一次,然后再把这一份持久化的数据发送给多个并发连接的slave。

主从复制(全量复制)流程图:

数据部分复制

当master和slave断开重连后,一般都会对整份数据进行复制。但从redis2.8版本开始,redis改用可以支持部分数据复制的命令PSYNC去master同步数据,slave与master能够在网络连接断开重连后只进行部分数据复制(断点续传)。

master会在其内存中创建一个复制数据用的缓存队列,缓存最近一段时间的数据,master和它所有的slave都维护了复制的数据下标offset和master的进程id,因此,当网络连接断开后,slave会请求master继续进行未完成的复制,从所记录的数据下标开始。如果master进程id变化了,或者从节点数据下标offset太旧,已经不在master的缓存队列里了,那么将会进行一次全量数据的复制。

主从复制(部分复制,断点续传)流程图:

如果有很多从节点,为了缓解主从复制风暴(多个从节点同时复制主节点导致主节点压力过大),可以做如下架构,让部分从节点与从节点(与主节点同步)同步数据

总结

RDB和AOF对比

持久化可以保证数据安全,但会带来额外的开销,请遵循下列建议:
• ⽤来做缓存的Redis实例尽量不要开启持久化功能
• 建议关闭RDB持久化功能,使⽤AOF持久化
• 利⽤脚本定期在slave节点做RDB,实现数据备份
• 设置合理的rewrite阈值,避免频繁的bgrewrite
• 配置no-appendfsync-on-rewrite =yes,禁⽌在rewrite期间做aof,避免因AOF引起的阻塞
部署建议:
• Redis实例的物理机要预留⾜够内存,应对fork和rewrite
• 单个Redis实例内存上限不要太⼤,例如8G。可以加快fork的速度、减少主从同步、数据迁移压⼒
• 不要与CPU密集型应⽤部署在⼀起
• 不要与⾼硬盘负载应⽤⼀起部署。例如:数据库、消息队列

相关文章:

Redis 之持久化

目录 介绍 RDB RDB生成方式 自动触发 手动触发 AOF(append-only file) Redis 4.0 混合持久化 Redis主从工作原理 总结 介绍 Redis提供了两个持久化数据的能力,RDB Snapshot 和 AOF(Append Only FIle)…...

视频监控汇聚平台:Liveweb安防监控平台实现接入监控视频集中管理方案

随着各行业数字化转型的不断推进,视频监控技术在行业内的安防应用及管理支撑日益增多。然而,由于前期规划不清晰、管理不到位等问题,视频监管系统普遍存在以下问题: 1. 各部门单位在视频平台建设中以所属领域为单位,导…...

ABAP - 系统集成之SAP的数据同步到OA(泛微E9)服务器数据库

需求背景 项目经理说每次OA下单都需要调用一次SAP的接口获取数据,导致效率太慢了,能否把SAP的数据保存到OA的数据库表里,这样OA可以直接从数据库表里获取数据效率快很多。思来想去,提供了两个方案。 在集群SAP节点下增加一个SQL S…...

uniapp使用ucharts修改Y、X轴标题超出换行

找到ucharts里面的u-charts.js。 Y轴的话找到drawYAxis方法。然后找到方法里面绘制文字的context.fillText方法。先把这个代码注释掉,然后加上下面代码 let labelLines item.split(\n); let currentY pos yAxisFontSize / 2 - 3 * opts.pix; labelLines.forEac…...

三分钟详细解读什么是Ecovadis认证?

Ecovadis认证,这一源自法国的全球性企业可持续性评估体系,宛如一面明镜,映照出企业在环境、社会和治理(ESG)领域的真实面貌。它不仅仅是一项简单的认证,更是一个推动全球企业和供应链向更加绿色、公正、透明…...

spring6:4、原理-手写IoC

目录 4、原理-手写IoC4.1、回顾Java反射4.2、实现Spring的IoC 4、原理-手写IoC 我们都知道,Spring框架的IOC是基于Java反射机制实现的,下面我们先回顾一下java反射。 4.1、回顾Java反射 Java反射机制是在运行状态中,对于任意一个类&#x…...

爬取的数据能实时更新吗?

在当今数字化时代,实时数据更新对于企业和个人都至关重要。无论是市场分析、商品类目监控还是其他需要实时数据的应用场景,爬虫技术都能提供有效的解决方案。本文将探讨如何利用PHP爬虫实现数据的实时更新,并提供相应的代码示例。 1. 实时数…...

Linux 下使用飞鸽传书实现与Windows飞秋的通信

最近把单位的办公电脑换成Linux系统,但是其他同事们都使用飞秋2013进行局域网通信和文件传输,经过一番尝试,发现飞鸽传书For Linux 2014能够实现两者的互相通信。 飞鸽传书ForLINUXLinux版下载_飞鸽传书ForLINUX免费下载_飞鸽传书ForLINUX1.2…...

MongoDB分片集群搭建及扩容

分片集群搭建及扩容 整体架构 环境准备 3台Linux虚拟机,准备MongoDB环境,配置环境变量。一定要版本一致(重点),当前使用 version4.4.9 配置域名解析 在3台虚拟机上执行以下命令,注意替换实际 IP 地址 e…...

qt QSettings详解

1、概述 QSettings是Qt框架中用于应用程序配置和持久化数据的一个类。它提供了一种便捷的方式来存储和读取应用程序的设置,如窗口大小、位置、用户偏好等。QSettings支持多种存储格式,包括INI文件、Windows注册表(仅限Windows平台&#xff0…...

【Linux】ubuntu下一键配置vim

🔥个人主页🔥:孤寂大仙V 🌈收录专栏🌈:Linux 🌹往期回顾🌹:Linux权限(超详细彻底搞懂Linux的权限) 🔖流水不争,争的是滔滔…...

【NLP 9、实践 ① 五维随机向量交叉熵多分类】

目录 五维向量交叉熵多分类 规律: 实现: 1.设计模型 2.生成数据集 3.模型测试 4.模型训练 5.对训练的模型进行验证 调用模型 你的平静,是你最强的力量 —— 24.12.6 五维向量交叉熵多分类 规律: x是一个五维(索引)向量&#xff…...

信息系统安全防护攻防对抗式实验教学解决方案

一、引言 在网络和信息技术迅猛发展的今天,信息系统已成为社会各领域的关键基础设施,它支撑着电子政务、电子商务、科学研究、能源、交通和社会保障等多个方面。然而,信息系统也面临着日益严峻的网络安全威胁,网络攻击手段层出不…...

【笔记2-4】ESP32:freertos任务创建

主要参考b站宸芯IOT老师的视频,记录自己的笔记,老师讲的主要是linux环境,但配置过程实在太多问题,就直接用windows环境了,老师也有讲一些windows的操作,只要代码会写,操作都还好,开发…...

2024年12月6日Github流行趋势

项目名称:lobe-chat 项目维护者:arvinxx, semantic-release-bot, canisminor1990, lobehubbot, renovate项目介绍:一个开源的现代化设计的人工智能聊天框架。支持多AI供应商(OpenAI / Claude 3 / Gemini / Ollama / Qwen / DeepSe…...

matlab读取NetCDF文件

matlab对NetCDF文件进行信息获取和读取数据 文章目录 前言一、什么是NetCDF文件二、读取NetCDF文件数据 1.引入库 2.读入数据总结 前言 在气象学中,许多气象数据存储在NetCDF文件中,后缀为.nc,通常可以用NCL、python和MATLAB等对该…...

RDMA驱动学习(三)- cq的创建

用户通过ibv_create_cq接口创建完成队列,函数原型和常见用法如下,本节以该用法为例看下cq的创建过程。 struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe,void *cq_context,struct ibv_comp_channel *channel,int comp_vector); cq …...

Flask使用Celery与多进程管理:优雅处理长时间任务与子进程终止技巧(multiprocessing)(subprocess)

在许多任务处理系统中,我们需要使用异步任务队列来处理繁重的计算或长时间运行的任务,如模型训练。Celery是一个广泛使用的分布式任务队列,而在某些任务中,尤其是涉及到调用独立脚本的场景中,我们需要混合使用multipro…...

Django模板系统

1.常用语法 Django模板中只需要记两种特殊符号: {{ }}和 {% %} {{ }}表示变量,在模板渲染的时候替换成值,{% %}表示逻辑相关的操作。 2.变量 {{ 变量名 }} 变量名由字母数字和下划线组成。 点(.)在模板语言中有…...

15. 文件操作

一、什么是文件 文件(file)通常是磁盘或固态硬盘上的一段已命名的存储区。它是指一组相关数据的有序集合。这个数据集合有一个名称,叫做文件名。文件名 是文件的唯一标识,以便用户识别和引用。文件名包括 3 个部分:文件…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...